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The statistics of multi-photoelectron pulse-height distributions
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Abstract

Multi-photoelectron pulse-height distributions feature in the scientific literature on light detectors, and yet there appears to have been

no attempt to describe the statistics of such spectra. Formulas for pdfs are derived, assuming Poisson statistics, but more importantly for

single-electron response curves of any description—analytical or experimental. The pdf generated by a pulsed light source, detected by a

PMT of high d1 gain, agrees with statistical predictions.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Increasingly in the literature, and particularly in this
journal, we are presented with multi-photoelectron pulse-
height distributions (MPHD) in which peaks due to 1, 2,
y N photoelectrons are clearly seen. In the proceedings of
the last three Beaune conferences on photodetection [1], no
less than 24 of the presentations include such spectra. It is
generally understood that the resolution of this class of
detector is somehow linked to N, the larger the N, the
better is the resolution. The first MPHD to appear in the
literature is probably the one due to Morton et al. [2] at
RCA. Their newly developed vacuum photomultiplier
(PMT) with a GaP, high d1 gain, first stage showed the
imprint of five photoelectrons. Since that time, further
detectors capable of even higher resolution have been
developed. These detectors include: microchannel plate
photomultipliers (MCPMT), hybrid photomultipliers
(HPD), and more recently, several different types of silicon
PMTs (SiPM) based on multi-pixel avalanche photodiodes.
The last two mentioned are capable of resolving up to 20
peaks. Detailed descriptions of all these devices and their
performance capabilities can be found in Ref. [1].

A well-resolved single-electron response (SER) is a
prerequisite for a highly structured MPHD. In practical
terms, an SER with a peak-to-valley ratio in excess of three
and a resolution of o60% is sufficient for this purpose.
Despite the obvious importance of the MPHD to a wide
range of detectors, there is, to the author’s knowledge, no
published statistical treatment of the subject that is wholly
satisfactory. In one paper [3] concerning PMTs, the
theoretical treatment begins with the statement ‘the charge
amplification process initiated by one photoelectron can be
approximated by a Gaussian distribution.’ This is certainly
not the case for conventional PMTs where the SERs are
always asymmetrical. The method first used by Ranucci
et al. [4] and subsequently by Ankowski et al. [5] is more
satisfactory because the simulation assumes a combination
of an exponential and a Gaussian. There is, however, no
physics underlying any of these assumptions. The existing
procedures are closer to curve fitting than they are to
statistical predictions—which is the purpose of the present
study.
The statistical treatment that has been adopted for the

multiplication (gain) process is general. It allows for the use
of any mathematical distribution, or, more importantly,
even an experimentally measured SER.
For completeness, although it is of limited utility, we

consider as a special case, the assumption of Poisson
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statistics for the multiplier. Lombard and Martin [6]
showed for an ideal multiplier, all of whose stages obey
Poisson statistics, that the first stage of multiplication is the
most important where resolution is concerned. If the first
stage gain is sufficiently high, say greater than five, then the
subsequent stages will have negligible effect on the
dispersion of the anode signal. Since, in this study, we
are dealing with devices with near noiseless gain, we can
justifiably use a model with just a single, very high gain,
stage of multiplication for this special case.

It is shown how any statistical MPHD can be
deconvoluted into its N-fold components. This process
provides an insight into the underlying structure of the
MPHD.

2. Statistical considerations

Light sources relevant to particle and astrophysics are
predominantly Poisson in their statistical behaviour and
the photoelectric effect is certainly binomial. It is readily
shown that the combined process is Poisson, so there is no
loss in generality by assuming Poisson statistics for
photoelectron emission.

The approach used in this work is similar to that
followed by Ref. [6], where the use of generating functions
is central to arriving at the final results. We cascade two
distributions A and B. A describes the light detection
statistics, assumed to be Poisson, while B refers to the
statistics of the multiplier, which for the moment is
unspecified. A happens first and B operates on the outcome
of A. We derive an expression for the combined statistics
for any distribution representing B. Given the SER of a
photon detecting device, whether it is analytical or
experimentally determined, we predict the MPHD for all
the detector types.

The probability distributions for A and B are repre-
sented by p(n) and q(s), respectively. The generating
function, GB(u), is by definition

GBðuÞ ¼ qð0Þ þ qð1Þuþ qð2Þu2 þ � � � þ qðsÞus (1)

where a finite number of terms, s+1, has been assumed to
make the point that Eq. (1) can equally represent a set of
experimental points, q(s), or an infinite set of probabilities,
as for a Poisson distribution for example. The generating
function for the cascaded process [7] is, in any case

GABðuÞ ¼ GA½GBðuÞ� (2)

GABðuÞ ¼ pð0Þ þ pð1Þ½GBðuÞ�

þ pð2Þ½GBðuÞ�
2 þ pð3Þ½GBðuÞ�

3 þ � � � ð3Þ

GAB(u) may also be written in terms of the cascaded
probability distribution, P(r), which is the distribution
required:

GABðuÞ ¼ Pð0Þ þ Pð1Þuþ Pð2Þu2 þ Pð3Þu3 þ � � � (4)

Differentiation of the generating functions is denoted by
a superscript in parentheses, for example G

ðrÞ
ABðuÞ is GAB(u)

differentiated r times, but a superscript without brackets
indicates an index. By repeated differentiation of Eq. (4) we
have

G
ðrÞ
ABð0Þ ¼ r!PðrÞ. (5)

For presentation purposes, we define G
ð0Þ
ABðuÞ to be the

undifferentiated function GAB(u). We now replace the p(n)
terms in Eq. (3) by Poisson probabilities, for a mean of m1

photoelectrons, arriving at the combined generating func-
tion, GAB(u); q(s) is embodied in GB(u) but still undefined.

GABðuÞ ¼ e�m1 þ e�m1m1GBðuÞ þ e�m1 fm1GBðuÞg
2

2!

þ e�m1 fm1GBðuÞg
3

3!
þ � � �

G
ð0Þ
ABðuÞ ¼ e�m1 expfm1GBðuÞg ð6Þ

G
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ð2Þ
B ðuÞG

ð0Þ
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ð1Þ
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ð1Þ
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ð3Þ
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ð2Þ
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ð1Þ
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ð1Þ
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G
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AB ðuÞ ¼ m1

Xr

k¼0

r!

k!ðr� kÞ!
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From Eq. (5), G
ðrþ1Þ
AB ð0Þ ¼ ðrþ 1Þ!Pðrþ 1Þ, G

ðrþ1�kÞ
B ð0Þ ¼

ðrþ 1� kÞ!qðrþ 1� kÞ and G
ðkÞ
ABð0Þ ¼ k!PðkÞ leading to

Pðrþ 1Þ ¼
m1

rþ 1
�
Xr

k¼0

ðrþ 1� kÞ qðrþ 1� kÞPðkÞ. (8)

Eq. (8) is subject to (r+1�k)ps from Eq. (1). From
Eqs. (4) and (6), Pð0Þ ¼ G

ð0Þ
ABð0Þ ¼ expf�m1ð1� qð0ÞÞg.

Knowing P(0), we can calculate P(1) from Eq. (8), which
gives Pð1Þ ¼ m1qð1Þ expf�m1ð1� qð0ÞÞg. Continuing this
iterative process will yield the complete set of P(r).
Consider the special case for which Poisson statistics

apply to the first stage of the multiplier, that is qðrÞ ¼

e�m2m2 r=r!. Substituting into Eq. (8) we have

Pðrþ 1Þ ¼
m1m2 e

�m2

rþ 1

Xr

k¼0

mr�k
2

PðkÞ

ðr� kÞ!
. (9)

3. Folded distributions

Eqs. (8) and (9) provide the envelope of MPHD. The
analysis that follows will allow us to probe this envelope to
reveal its structure in terms of: one-photoelectron, two-
photoelectron y N-photoelectron pulse-height distribu-
tions, all suitably weighted. Although these distributions
are contrived, in that they do not exist in isolation, they are
useful devices for revealing the structure of the MPHD.
Given any probability distribution, q(s), with s finite, we
generate the pdf for the distribution obtained by folding
q(s) with itself N times, where QN(r), the N-folded pdf, is a
function of q(s) only. We define Q1(s) ¼ q(s) to represent
the prime distribution (the SER); Q2(2s) is the distribution
obtained by folding q(s) with itself and Q3(3s) results from
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