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Centering of quadrupole family
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Abstract

A procedure for finding the individual centers for a family of quadrupoles fed with a single power supply is described. The method is

generalized for using the correctors adjacent to the quadrupoles. Theoretical background is presented as well as experimental data for the

NSLS rings. The method accuracy is also discussed.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

RF beam position monitors (BPM) utilizing signals from
pick-up electrodes (PUE) provide good resolution and
precision. The absolute accuracy (i.e. position of an orbit in
a vacuum chamber) suffers due to various reasons, such as
different attenuation in the coaxial cables, deviations in
sensitivity of PUE, or unmatched gain in the front end of
the receivers.

To improve the absolute accuracy, it was suggested to
use the magnetic centers of the quadrupoles for calibration
of the BPM [1]. The method is based on varying individual
quadrupole strengths by a few percent. If the center of the
beam does not pass through the magnetic center of a
particular quadrupole, then the beam experiences a
deflection y due to the non-zero field integral. The
defection angle is proportional to the orbit deviation from
the center (x in the horizontal plane and y in the vertical
plane), the quadrupole strength K1, and the magnetic
length of the quadrupole LQ:

yx;y ¼ �x; yK1LQ. (1)

The positive sign is used for the vertical plane and the
negative sign for the horizontal plane (assuming K140 for

the focusing quadrupoles, K1o0 for the defocusing
quadrupoles, where positive angles are outwards and
upwards). With the change of the quadrupole strength
K1, the kick changes and the equilibrium orbit varies. The
beam position where the orbit does not change with the
quadrupole strength corresponds to the magnetic center of
the quadrupole.
The orbit deviation caused by a kick can be found from

the equations below [2]:

xðsÞ ¼
yx

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bxð0ÞbxðsÞ

p cos½jfxðsÞ � fxð0Þj � pnx�

sin pnx

�
ZxðsÞZxð0Þ

acC
,

yðsÞ ¼
yy

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
byð0ÞbyðsÞ

q cos½jfyðsÞ � fyð0Þj � pny�

sin pny

, ð2Þ

where bx,y are the betatron functions, fx,y are the betatron
phase advances, s is the longitudinal coordinate with s ¼ 0
corresponding to the quadrupole location, nx,y are the
betatron tunes, Zx is the dispersion function, ac is the
momentum compaction factor, and C is the ring circum-
ference. We neglect vertical dispersion because its value is
close to zero.
A variation of the quadrupole strength by dK1 will give

two first-order terms for the change in the kicks Dyx,y [3].
The first is associated with the focusing strength and the
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second is due to a shift of the closed orbit:

Dyx ¼ � LQðK1dxþ xdK1Þ,

Dyy ¼ LQðK1dyþ ydK1Þ. ð3Þ

For quadrupoles located in a dispersion-free region,
Eq. (2) can be simplified by dropping the dispersion term.
The formula for the change in kick value induced by the
quadrupole strength modulation was obtained in Ref. [3]
by solving Eqs. (2) and (3):

Dyx;y ¼
�x; yLQdK1

1� K1LQbx;y=ð2 tan pnx;yÞ
. (4)

By varying the orbit at a particular quadrupole, using
local bumps or nearby correctors, one can find the beam
position, which provides minimal closed orbit variations
with changing quadrupole strength. This procedure allows
determination of the offset of the quadrupole magnetic
center relative to the BPM center. The method can be easily
implemented for accelerators with individually powered
quadrupoles. For a storage ring with a quadrupole family
fed by a single power supply, it was suggested to utilize the
current shunts which allow variation of the current in a
single quadrupole without affecting strength of the others
[1,4].

2. Quadrupole family centering

In Ref. [5], it was suggested to compensate the variation
of the kick of a quadrupole by a built-in or adjacent
corrector. The method is based on the orbit ‘‘smoothing’’
algorithm for finding the settings of the adjacent correctors
which restore the reference orbit. For the built-in corrector
the orbit deviation from the quadrupole center can be
found from the change in its strength using Eq. (1). For a
stand-alone adjacent corrector one should consider the
difference in the values of betatron functions, b, and the
betatron phases, j.

The closed orbit deviation along the storage ring B(s)
caused by the kick DdK1LQ placed at the quadrupole
location can be found from the formula below:

zQðsÞ ¼ �
DdK1LQ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bQbðsÞ

q cosðjfðsÞ � fQj � pnÞ
sin pn

. (5)

Here D is the orbit displacement from the quadrupole
center, dK1 is the change in the quadrupole strength, LQ is
the quadrupole length, n is the betatron frequency, s is
position along the ring. The same formula applies for the
trim with the kick at.

ztðsÞ ¼
at
2

ffiffiffiffiffiffiffiffiffiffiffiffi
btbðsÞ

p cosðjfðsÞ � ftj � pnÞ
sin pn

. (6)

By a proper choice of the position where s ¼ 0, it is
possible to remove the absolute value in the cosine
argument and thereby simplify further analysis. For the

trim strength shown in the formula below:

at ¼ �
DdK1LQ

cosðfQ � ftÞ

ffiffiffiffiffiffi
bQ
bt

s
, (7)

the uncompensated orbit deviation is the following:

zðsÞ ¼ �
DdK1LQ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bQbðsÞ

q sin½fðsÞ � fQ � pn�
sin pn

� tanðft � fQÞ. ð8Þ

The found trim value should provide a least-squares
deviation of the orbit because the oscillations are in
quadrature with those induced by the quadrupole change.
The experimental results can also depend on the distribu-
tion of the BPMs along the ring. By inverting Eq. (7), it is
easy to obtain the following formula for the orbit offset:

D ¼
�at cosðfQ � ftÞ

LQdK1

ffiffiffiffiffiffi
bt
bQ

s
. (9)

With correctors built into the quadrupoles (fQ ¼ ft and
bQ ¼ bt), Eq. (9) becomes Eq. (1).
The operation of the orbit-smoothing algorithm [5] is

similar to the orbit feedback systems stabilizing beam
trajectory in storage rings. Modern orbit feedback and
correction systems utilize multiple trims and allow the
global orbit in the storage ring to be maintained with high
accuracy in real time.
In Ref. [5] it was proposed to use an equal number of

trims to the number of quadrupoles in the family.
However, during experiments with the NSLS storage rings
it was found that the orbit feedback system with the
number of trims significantly exceeding the number of
quadrupoles in the family also performs adequately.
Moreover, there may be an advantage to this configuration
because such an approach eliminates systematic errors
caused by the orbit variation due to the tune shift.
Rotations of the elements about the beam axis of the trim
magnets (rolls) introduce an additional source of error in
the measurements. These errors can be suppressed by
steering the beam to the obtained ‘‘centers’’ and repeating
the measurements. The rolls and nonlinearities of the
BPMs are of less significance because they are used as
‘‘zero’’ indicators.
Noise in the orbit monitoring system leads to errors in

the measurement of the BPM offsets. Improving accuracy
through increasing the deviation of the quadrupole
strengths may be not an option due to the possible loss
of beam stability, especially if there are a significant
number of quadrupoles in a family. The tune shift due to
the variation of a single quadrupole with b-function b* can
be found from the well-known formula [4]:

Dn ¼
1

4p
b�dK1LQ. (10)

For a quadrupole family, the tune shift is multiplied by the
number of quadrupoles in the family NQ. Let us consider
the situation where the orbit deviates by D from the center
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