Contents lists available at ScienceDirect

Electrochimica Acta

journal homepage: www.elsevier.com/locate/electacta

A novel mixed potential NH₃ sensor based on TiO₂@WO₃ core–shell composite sensing electrode

Weiwei Meng^a, Lei Dai^{a,b,*}, Jing Zhu^a, Yuehua Li^a, Wei Meng^a, Huizhu Zhou^{a,*}, Ling Wang^{a,b,*}

^a College of Chemical Engineering, North China University of Science and Technology, Tangshan 063009, PR China ^b Hebei Province Key Laboratory of Inorganic and Non-Metal Materials, Tangshan 063009, PR China

ARTICLE INFO

Article history: Received 3 August 2015 Received in revised form 19 January 2016 Accepted 4 February 2016 Available online 6 February 2016

Keywords: Core-shell TiO2@WO3 mixed potential NH3 sensors La10Si5.5Al0.5O27.

ABSTRACT

The TiO₂@WO₃ core-shell composite with mass ratio of core and shell4:1 was prepared by a hydrothermal synthesis method using sodium tungstate dehydrate, nitric acid and commercial TiO₂ powder as raw materials. A novel mixed potential NH₃ sensor was fabricated by using above-mentioned TiO₂@WO₃ as sensing electrode and La₁₀Si_{5.5}Al_{0.5}O₂₇ as solid electrolyte. X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscopy (TEM) were used to characterize the morphology and structure of the samples. The sensor response to NH₃ was examined at 400~550 °C. The experimental results indicated that the sensor based on TiO₂@WO₃ sensing electrode possessed greatly enhanced NH₃ sensing properties including higher and more stable response value and faster response rate compared to the sensor using TiO₂, WO₃ or TiO₂-WO₃ mixture sensing electrode under the same conditions. The responding potential values of the sensor with TiO₂@WO₃ sensing electrode exhibited a linear dependence on the logarithm of the NH₃ concentrations. The highest NH₃ sensitivity of 74.8 mV/decade was achieved at 450 °C. In the meantime, the sensor salso showed well anti-interference capability to CH₄, CO₂ and H₂, but noticeable cross sensitivity toward NO₂ was observed. O₂ effect on responding signal could be calibrated by predetermining O₂ content.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, the diesel cars are substantially introduced because of their high fuel efficiency and low CO_2 emissions. However, compared to gasoline automobiles, the diesel cars produce higher emissions of NO_x because three-way catalysts for NO_x removal do not work in oxidizing atmosphere [1,2]. NO_x emissions result in serious environment problems, including photochemical smog and acid rain. Therefore, suitable advanced after-treatment technology is needed to reduce NO_x into N₂ in order to meet the upcoming more stringent emission standards. Selective Catalytic Reduction (SCR) using NH₃/urea has been recognized as an effective technology for the removal of NO_x emissions from heavy-duty diesel engine cars [3,4]. In SCR system, NH₃ as a reducing agent produced by injecting urea into a catalytic converter successfully reduces NO_x to N₂ over catalysts in a wide range of temperature [5,6]. The amount of urea injection must be

E-mail addresses: dailei_b@163.com (L. Dai), tswling@126.com, zhz@ncst.edu.cn (L. Wang).

strictly controlled in order that redundant NH₃ will not cause new air pollution [7]. So NH₃ concentration in down-stream needs monitoring continuously.

Several analytical techniques have been developed for detecting NH₃, including gas chromatography, ion chromatography and electrochemical methods. Compared to other approaches, electrochemical detection shows the advantages of simple experimental procedures, short response time, and feasibility for building portable sensors. Fortunately, the smart NH₃ sensor technology is available for vehicle applications [8]. Up to now, the main types of NH₃ sensors mostly investigated by researchers are semiconductor-type sensors [9,10] and solid electrolyte type sensors [11–28]. However, the semiconductor-type gas sensors for NH₃ detection in the presence of various interfering gases remain challenging [29]. In contrast, solid electrolyte type gas sensors have advantages of simple structure, good selectivity and high sensitivity, especially excellent stability under high temperature, showing a wide application prospect [30].

The solid electrolyte type NH₃ sensors include Nerstian type [11–13] and mixed potential type [14–28]. Nagai et al. developed Nernstian NH₃ sensors based on two types of auxiliary sensing electrode of $Pr_2(SO_4)_3$ ·(NH₄)_2SO₄ or 0.7La₂O₂SO₄–0.3NH₄H₂PO₄.

^{*} Corresponding authors at: College of Chemical Engineering, North China University of Science and Technology, Tangshan 063009, PR China.

The sensors showed superior sensing performances such as rapid, continuous and reproducible response to NH₃. But because of the stability problem of the auxiliary electrodes, the NH₃ sensors could not be utilized at high temperature [11–13]. The sensors based on ammonium hydrogermanate electrolyte could be used at a limited temperature range [14,15]. The mixed potential type NH₃ sensors based on solid electrolyte have been extensively reported by some groups. Häfele et al. proposed a mixed potential type sensor using zirconia electrolyte. The sensing signal of the sensor was a result of catalytic and adsorptive interactions between the gas and the sensing electrode [16]. Kida et al. fabricated a mixed potential sensors by depositing MoO₃ layer with a thickness of 200 nm on a YSZ tube, which showed considerably high sensitivity toward NH₃ (10–100 ppm) in air at 500 °C. The sensing signal Δ EMF of the sensor was still as high as 30 mV even to 10 ppm NH_3 [17]. Wang et al. presented various metals and metal oxides as sensing electrodes, including V_2O_5 , MoO₃ and/or WO₃ that are doped with materials like Bi and with stabilizers to improve the long-term stability for ammonia sensors and declared that doped V₂O₅, $BiVO_4$, MoO_3 and WO_3 are effective for the sensing to NH_3 [18]. A YSZ-based mixed potential type NH₃ sensor attached with an Auelectrode covered with vanadia-tungstenia-titania-based SCR catalyst was fabricated and displayed good sensitivity and longstability to NH₃ [20]. The planar sensors using Au or NiO/Au as the sensing electrode also exhibited good sensitivity to NH₃ at 600 and 700 °C [19,21,22]. Teranishi et al. demonstrated an approach to impart both proton conduction and solid acidity to the surface of YSZ by the surface treatment of YSZ with H₃PO₄, the sensor showed a remarkably sensitive and selective response to low concentrations (10-200 ppm) of NH₃ [23]. Satsuma et al. fabricated mixed potential sensors using YSZ as the solid electrolyte and a mixture of Au and various metal oxides (e.g., V₂O₅, Bi₂O₃ or MoO₃) as the sensing electrode. The effects of calcination temperature and acidbase properties of the metal oxides on the sensing properties were examined. The results showed that the acidity of metal oxides closely correlated with the NH₃ selectivity and the sensors with metal oxides calcined at nearly melting points displayed optimal properties [24]. Plashnitsa et al. prepared a planar sensor using a nano-structured Au sensing electrode and found that its performance was greatly modified by nano-SiO₂ particles. As a consequence, the sensor exhibited great selectivity to NH₃ ascribed to the strong acid-base interaction between nano-SiO2 and gaseous NH₃ molecules [25]. The YSZ-based mixed potential sensors attached with CoWO₄ gave the fast response. The 90% response and recovery time to 100 ppm NH₃ were 3s and 1s, respectively. The sensor also exhibited outstanding selectivity to NH₃ against the interference gases [26]. The NH₃ sensor with In₂O₃ sensing electrode showed a excellent response to NH₃ but serious cross-sensitivity to NO₂. In order to minimize the interference from NO₂ of the above sensor, the LaCoO₃ reference electrode was used instead of Pt. The result showed that the interfering effect of 150 ppm NO_2 to the new sensor was reduced by five times [27]. Recently, the NH₃ sensor based on YSZ electrolyte and Ni₃V₂O₈ sensing electrode exhibited good sensitivity, repeatability, longterm stability, and selectivity against various interfering gases [28].

Obviously, the improvement of NH₃ sensor is mainly depended on the design of sensing electrodes. The sensitivity of the NH₃ sensors has room to be further enhanced by tuning chemical composition and microstructure of sensing electrode. Recently, core-shell nanostructure composites substituting single metal oxide for gas sensors have attracted great attention due to their unique properties, which give more versatile functions [31,32]. As far as we know, the core shell structure composite materials as the sensing electrode for solid electrolyte-based mixed potential type NH₃ sensors has received less attention and need further investigation WO_3 and TiO_2 as common sensing materials had been employed for NH_3 detection in semiconductor sensors and showed excellent response properties [33,34]. In this work, we synthesized $TiO_2@WO_3$ core shell composite via the hydrothermal method. A mixed potential type NH_3 sensor was prepared by using the $TiO_2@$ WO_3 as sensing electrode and $La_{10}Si_{5.5}Al_{0.5}O_{27}$ as electrolyte. The morphology and structure of the samples were characterized and the performance of the sensors was examined.

2. Experimental

2.1. Preparation and characterization of materials and sensor

The TiO₂@WO₃ core-shell composite was prepared from $Na_2WO_4 \cdot 2H_2O(AR)$, and TiO_2 (AR, 150 nm for diameter) by the hydrothermal process similar to what reported by Xu et al. [35]. Typically, Na₂WO₄ solution was first prepared by dissolving 1.000 g $Na_2WO_4 \cdot 2H_2O$ into 40 ml deionized water and then 2.8115 g TiO₂ were added into the Na₂WO₄ solution under constant magnetic stirring to keep the final mass ratio of $TiO_2/WO_3 = 4:1$. Then 20 ml 5 M HNO₃ was dropped into the mixture with constant magnetic stirring. As a result, the white suspension was turned into yellow color, indicating that H₂WO₄ was formed. The suspension was transferred into a Teflon-lined autoclave and maintained at 180 °C for 24 h, and then cooled to room temperature. The resulting yellow precipitate was extracted by filtering and dried in vacuum at 80 °C for 12 h. After the precipitate was calcined in air at 500 °C for 2 h, TiO₂@WO₃ core-shell composite was obtained. For comparison purposes, WO₃ powder was prepared by the same method except for no TiO₂ addition. Finally, yellow WO₃ powder was obtained by calcination in air at 500°C.Furthermore, the physical mixture of TiO₂ and WO₃ (TiO₂/WO₃) was obtained by mixing TiO₂ powder and the obtained WO₃ powder with mass ratio of $TiO_2:WO_3 = 4:1$.

 $La_{10}Si_{5.5}Al_{0.5}O_{27}$ (LSAO) electrolyte with porous layer was prepared by solid state reaction method in combination with screen-printing technology. The analytical grade La_2O_3 , Al_2O_3 and SiO₂ powders were used as raw materials. It was noted that La_2O_3 powder needed to be treated at 900 °C for 3 h before weighing in order to eliminate the lanthanum hydroxide or lanthanum hydroxyl present in La_2O_3 powder [36]. The stoichiometric

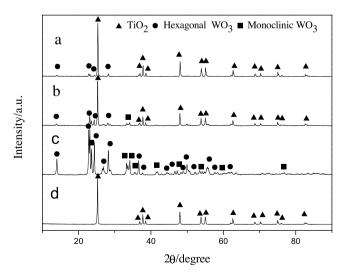


Fig. 1. XRD patterns of the prepared powder samples (a) $TiO_2@WO_3,$ (b) $TiO_2/WO_3,$ (c) $WO_3,$ (d) $TiO_2.$

Download English Version:

https://daneshyari.com/en/article/183231

Download Persian Version:

https://daneshyari.com/article/183231

Daneshyari.com