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Abstract

In this paper we introduce and evaluate a completely data-driven method to optimize both the linear expansion coefficients and the
used temporal basis functions in dynamic PET reconstruction from list-mode data.

We present the first results of our method using simulated 2D PET data. The time activity curves are modeled as a conic combination
of B-splines. The B-splines are optimized with respect to their knot locations. We have combined the newly introduced method with our
previously developed dynamic MLEM algorithm in order to further improve the likelihood. The results show that even one iteration of
our newly developed algorithm can drastically increase the likelihood and the resulting images better represent the underlying TACs.
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1. Introduction

The goal of dynamic positron emission tomography
(PET) imaging is to determine the spatio-temporal activity
distribution in the patients body. For reconstruction
purposes the activity density is parameterized as a linear
combination of spatio-temporal basis functions. Com-
monly used basis functions are image elements (voxels/
pixels) discretely changing over time. Such reconstructions,
consisting of a series of static images, are referred to as
being time binned.

In sinogram format the data is acquired as a time series
of static sinograms and conventionally the different time
frames are reconstructed independently. Modeling of the
time activity curves (TACs) however has proven to be
beneficial [1].

In list-mode format all detected coincidences are stored
one by one in a list. Even when the data are acquired in list-
mode format the data are commonly binned in a number of
time frames and then reconstructed independently. How-
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ever, time binning inevitably compromises the available
temporal resolution of the list-mode data (typically 1 ms).
Therefore, dynamic reconstruction algorithms that exploit
the high temporal resolution of list-mode data have been of
interest for years. Snyder [2] developed a list-mode
Maximum  Likelihood  Expectation = Maximization
(MLEM) algorithm for rate functions described by
convolution of the input function with a basis of
exponential functions. More general basis functions are
useful because they do not require any assumptions on the
underlying physiological process. A MLEM algorithm for
general basis functions was described in Ref. [3]. One
important class of such general basis functions are the B-
spline basis functions. B-spline basis functions have some
interesting properties that can be exploited during recon-
struction and therefore became popular in dynamic
emission-computed tomography [4-6]. The rate functions
are then linear combinations of the B-spline basis
functions. The two most commonly used B-splines are
the first order and the cubic or fourth order splines. First
order B-splines are rectangular basis functions and the
classical time-framed reconstruction approaches therefore
use a first order B-spline basis. Reconstructions using cubic
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splines reduce the bias and variance of the reconstructed
images as compared to time-framed reconstructions [5,7].
All the aforementioned approaches using general basis
functions have in common that the reconstruction task is
defined as finding the optimal linear expansion coefficients
in the time activity model. Studies using temporal B-splines
that also try to optimize the temporal basis functions in an
adaptive way show an even further decrease of the bias and
variance. The B-splines can effectively be optimized
through their defining knot positions. Previously developed
frameworks used ad hoc methods based on the head-curve
[5] or on intermediate reconstructed TACs [7] to redis-
tribute the knots.

In this paper a strategy to optimize the temporal basis
functions during dynamic PET reconstruction is intro-
duced. The algorithm tries to optimize both the linear
expansion coefficients and the used basis functions in order
to maximize the log-likelihood of the data. Our imple-
mentation uses B-splines as temporal basis functions which
are optimized through their defining knot positions. The
general framework however is applicable for other
temporal bases as well.

2. Theory
2.1. General framework

The activity distribution is parametrized on spatio-
temporal basis functions 7(r)B; ,(t), with I(r) the indicator
function of the sth spatial basis function and f; (7) is the
tth temporal basis function defined on the sth spatial basis
function. The measured list-mode data are samples of an
inhomogeneous Poisson process. At coincidence bin b of
the PET camera we observe an inhomogeneous Poisson
process with rate density given by

S, T
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where wy, are the linear expansion coefficients, p,(r) the
sensitivity — pattern of coincidence bin b. p, =
Jopy®WI(r)dr is the probability that an emission from
the sth spatial segment is detected at bin b. The detections
at the different coincidence bins are assumed independent
and the log-likelihood of the measured data becomes

Y
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where we have dropped the constant terms, t; and 7
denote the start and end times of the acquisition. and Py =
> D5 is the sensitivity of the detector for emissions from
the sth-segment.

The reconstruction task now consists of finding the (w, f§)
that maximizes the data log-likelihood i.e.

(W, B) = arg max L(#(w, B)). (3)

2.2. Classic dynamic reconstruction: MLEM_a

The classical dynamic reconstruction does not attempt to
optimize the temporal basis functions but only estimates
the linear expansion coefficients, i.e.

L(4(w, B)) = L(A(w)). “4)
The optimization problem in the linear expansion coeffi-
cients wy, uses our previously developed dynamic MLEM
iteration scheme [7]. The maximizer of the expectation has
an analytical expression and we get the dynamic MLEM
iteration scheme:

Wold 1
new S,t n
= Psp B (te) ——— (%)
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with S;; = P f ﬁ";,(r) dz, the generalized dynamic sensitiv-
ity. This is the normal listmode MLEM for 4D reconstruc-
tion [1,7]. We will refer to it as an MLEM_a iteration step.

w

2.3. Dynamic reconstruction using adaptive basis functions.
MLEM b

As in the MLEM a algorithm we can separate the
optimization of Eq. (2) into a set of smaller dimensional
optimization problems using the EM algorithm. Because
we also want to optimize the basis functions, the log-
likelihood of the expectation is only partially separable and
there is no closed form expression for the optimizer of the S
T-dimensional optimization problems. Several approaches
for numerical optimization can be considered. The evalua-
tion of the S objective functions and their derivatives with
respect to its T variables is straight forward, however they
require a projection and back projection of all data.
Therefore, we stored time-binned approximations of the
objective functions per EM iteration and the optimization
within one EM iteration was performed using these
approximative objective functions. This approximation
reduces the computational cost considerably and makes
the computational cost of one MLEM_b iteration compar-
able with one MLEM _a iteration.

2.4. Global scheme

The total reconstruction scheme is briefly outlined here.
We start off with an initial image (wo, f;) and start the EM
iterations. Depending on the iteration number i we can
decide if we only want to improve the linear expansion
coefficients using the MLEM_a algorithm or if we also
want to optimize the basis functions using the MLEM b
algorithm. We allow the combination of the two methods
because the MLEM_b algorithm is only approximative,
and thus the reconstruction should be concluded with a few
MLEM _a iterations in order to reconstruct an image with
the optimal linear expansion coefficients in combination
with the respective approximative optimal basis functions.
Moreover, MLEM_b could suffer from local extrema and
instabilities which can be prevented by a good starting
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