FISEVIER

Contents lists available at ScienceDirect

Electrochimica Acta

journal homepage: www.elsevier.com/locate/electacta

Sculpturing the Core towards Mesoporous Manganese Dioxides Nanosheets-Built Nanotubes for Pseudocapacitance

Hao Chen^a, Bo Zhang^{b,**}, Fei Li^a, Min Kuang^a, Ming Huang^a, Yue Yang^a, Yu Xin Zhang^{a,c,*}

- ^a College of Material Science and Engineering, Chongqing University, Chongqing 400044, PR China
- ^b Department of Cardiology, Xingiao Hospital, Third Military Medical University, Chongging 400037, PR China
- C National Key Laboratory of Fundamental Science of Micro/Nano-Devices and System Technology, Chongqing University, Chongqing 400044, PR China

ARTICLE INFO

Article history:
Received 20 September 2015
Received in revised form 12 November 2015
Accepted 12 November 2015
Available online 1 December 2015

Keywords: Manganese dioxides Nanotubes Chemical etching Supercapacitor

ABSTRACT

Ultrathin MnO_2 nanosheets-built nanotubes have been fabricated via a large-scale chemical etching method. The diameter and thickness of MnO_2 nanotubes can be controlled by fine-tuning the concentration of $KMnO_4$ solution, and the relationship between electrochemical properties and different wall thickness is notably investigated. Besides, the MnO_2 nanotubes possess a high surface area of $179.5~m^2~g^{-1}$ and lots of mesopores. Such unique features are beneficial for providing easy access of the electrolyte to the structure and shortening the diffusion distance of ions. More significantly, recyclable copper ions after etching can be used to synthesize Cu nanowires again. The MnO_2 nanotubes in a three-electrode system display much high specific capacitance ($377.5~F~g^{-1}$ at current density of $0.25~A~g^{-1}$), good rate performance. Moreover, an asymmetric supercapacitor on the basis of MnO_2 nanotubes as the positive electrode and activated graphenes (AG) as the negative electrode produced an energy density of $22.68~Wh~kg^{-1}$ and a maximum power density of $4.5~kWkg^{-1}$. These attractive discoveries suggest that it can be an aussichtsreich candidate as an efficient supercapacitive electrode.

 $\ensuremath{\text{@}}$ 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Electrochemical capacitors (ECs) have captured increasing attention due to high power density, fast charge-discharge properties, long cycling lifetime and environmentally benign nature [1–5]. The performances of ECs are directly determined by the electrochemical properties of electrode materials. Recently, a series of various electrode materials have been extensively studied for supercapacitors, such as carbon materials [6,7], conducting polymer [8] and transition-metal oxide [9,10]. In these electrode materials, manganese dioxide (MnO₂) has drawn tremendous notice on account of abundant resources, wide potential window, high theoretical capacity (~1370 F g⁻¹) and non-toxicity for supercapacitors electrodes [11–14].

The electrochemical properties of manganese dioxide are closely related with their morphologies, structures and crystallinity. To date, MnO₂ with diverse morphologies and structures has been synthesized and investigated successfully [15–17]. However,

E-mail addresses: yishengzhangbo@163.com (B. Zhang), zhangyuxin@cqu.edu.cn (Y.X. Zhang).

most MnO₂ materials usually suffer from austere aggregation, resulting in a low surface area and deficient utilization of the active materials. Consequently, the rational structural design and synthesis of MnO₂ could be beneficial to improve the issue. Among these structures, MnO2 nanotubes have been of tremendous favours by reason of offering high surface area, short ion diffusion length and fast kinetics. The synthetic methods of the MnO₂ nanotubes are extremely plentiful. Grote et al. [18] prepared the free-standing MnO₂ nanotube arrays by three-step template assisted synthesizing process, which was somewhat complicated and needed post processing. Huang et al. [19] fabricated CuO@MnO₂ core-shell nanotubes via hydrothermal method, which owned a low surface area (only involves outer surfaces, without inner surface of MnO₂ nanosheets-built shells around copper or CuO) and diminutive hollow channel. The synthesis of MnO₂ nanosheets-built nanotubes is rarely reported by specific chemical etching method, enjoying high surface area (outer and inner surface of MnO₂ shell) and controllable wall thickness. Based on the previous data, we successfully sculptured the core "CuO" via sulfuric acid, and MnO₂ nanotubes with different wall thickness were perfectly obtained on a large scale. Naturally, MnO2 nanotubes with large hollow channel can own high surface area and improve the effective interaction on the surface and inside of the nanotubes between the electrode and electrolyte.

^{*} Corresponding author at: College of Material Science and Engineering, Chongqing University, Chongqing 400044, PR China. Fax.: +862365104131.

^{**} Corresponding author.

In this work, we have fabricated porous MnO_2 nanotubes by a facile and effective two-step approach including hydrothermal synthesis and chemical etching method. The diameter and thickness of MnO_2 nanotubes can be controlled by adjusting the concentration of $KMnO_4$ solution. The wall thickness increases along with fortifying of the concentration of $KMnO_4$ solution, which is linked closely with electrochemical properties. More significantly, recyclable copper ions after etching can be used to synthesize Cu nanowires again. Moreover, an asymmetric supercapacitor on the basis of MnO_2 nanotubes as the positive electrode and activated graphenes (AG) as the negative electrode achieves $22.68 \, Wh \, kg^{-1}$ and a maximum power density of $4.5 \, kW \, kg^{-1}$.

2. Experimental

2.1. Synthesis of the CuO@MnO2 nanocomposites

All the chemical reagents were of analytical grade and used without any further purification. Cu nanowires were prepared by minor modified method [20]. First, the Cu NWs (10~15 mg) were dispersed in different KMnO₄ solution (30 ml; 0.01 M, 0.02 M and 0.03 M) and sonicated for 10 min to form a homogeneous solution. Then the mixtures were put into Teflon-lined stainless steel autoclaves maintained at 160 °C for 24 h. Finally, the samples were collected and washed with distilled water and ethanol for several times, and dried at 60 °C for 12 h to obtain the CuO@MnO₂ powders.

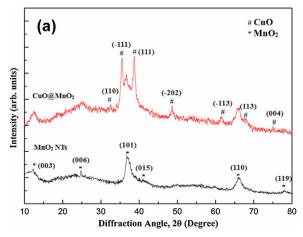
2.2. Preparation of the MnO₂ nanotubes

In a typical synthesis, $30\,\text{mg}$ CuO@MnO $_2$ were dispersed in H_2SO_4 solution ($30\,\text{ml}$, $1\,\text{M}$) to form a homogeneous precursor. The mixture was put in a water bath at $30\,^{\circ}\text{C}$ for $24\,\text{h}$, and then the solid products were washed with distilled water and ethanol (till the pH of the suspension was neutral). In the end, the samples were dried at $60\,^{\circ}\text{C}$ for $12\,\text{h}$.

2.3. Materials characterization

The compositions of as-prepared products were established by powder X-ray diffraction (XRD, D/max 2500, Cu K α). The morphology and structure of as-prepared samples were observed by focused ion beam scanning electron microscopy (ZEISS AURIGA FIB/SEM) equipped with an energy dispersive X-ray spectrometer (EDS) and transmission electron microscopy (TEM, ZEISS LIBRA

200). Nitrogen adsorption and desorption isotherms were measured by a micrometrics ASAP 2020 sorptometer.


2.4. Electrochemical measurements

All the electrochemical measurements were carried out by an electrochemical workstation (CHI 660E) in 1 M $\rm Na_2SO_4$ solution using a three electrode system. The working electrode was prepared by mixing active materials, carbon black, and polyvinylidene fluoride (PVDF) in N-methyl-2-pyrrolidone (NMP) with proportion of 7:2:1, and the slurry was spread onto a foam nickel (1 \times 1 cm²). The electrode was kept at 120 °C for 12 h under 10 MPa. The saturated calomel (SCE) and the platinum plate electrodes were worked as the reference and counter electrodes, respectively. The working electrode contained \sim 2 mg of MnO $_2$ nanotubes alone. The electrochemical impedance spectroscopy (EIS) was conducted with a perturbation amplitude of 5 mV in the frequency range between 100 kHz and 0.01 Hz.

The electrochemical performance of asymmetric supercapacitor was measured with a two- electrode system. In the two-electrode, MnO₂ nanotubes were as the positive electrode and activated graphenes (AG) were as the negative electrode, respectively. All the operating current densities were calculated on the basis of the total weight of MnO₂ NTs and AG.

3. Results and discussion

Fig. 1a shows the XRD patterns of the CuO@MnO2 composites and the MnO₂ nanotubes. Obviously, the diffraction peaks of the CuO@MnO₂ composites of 32.5°, 35.5°, 38.7°, 48.7°, 61.5°, 67.8° and 75° are in accord with the XRD pattern of the CuO (JCPDS NO. 80-1916) [21]. On the other hand, the (006) peak of CuO@MnO2 nanocomposites is not extra clear, indicating the nanocrystalline nature of the synthesized MnO₂. Meanwhile, it could be observed that the diffraction peaks of the MnO₂ nanotubes at about 12.3°, 24.8°, 36.6°, 42.2°, 65.5° and 78° are well in line with the standard XRD pattern of birnessite-type MnO₂ (JCPDS NO. 86-0666) [22]. No other peaks can be observed, manifesting high purity of the MnO₂ NTs obtained after etching. The typical SEM image and corresponding EDS mapping of the MnO₂ NTs are revealed in Fig. 1b and c, the mapping results demonstrate that K, Mn and O elements are well distributed. The as-prepared sample is K-birnessite type MnO₂, K⁺ was introduced to the interlayer of MnO₂ during the hydrothermal reaction. These consequences make clear that

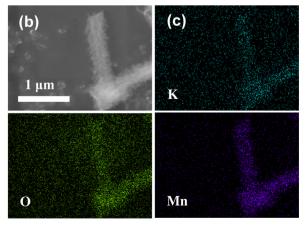


Fig. 1. (a) XRD patterns of CuO@MnO2 composites and MnO2 nanotubes; (b-c) Typical SEM image and the corresponding EDS mapping of MnO2 nanotubes.

Download English Version:

https://daneshyari.com/en/article/183295

Download Persian Version:

https://daneshyari.com/article/183295

<u>Daneshyari.com</u>