Available online at www.sciencedirect.com

NUCLEAR
INSTRUMENTS

D Ui SCIENCE(dDIRECT° & METHODS
o o IN PHYSICS
o & RESEARCH

ELSEVIER Nuclear Instruments and Methods in Physics Research A 559 (2006) 17-21 Sectond

www.elsevier.com/locate/nima
The graphics editor in ROOT
Ilka Antcheva®*, René Brun®, Carsten Hof’, Fons Rademakers®
YCERN, CH-1211 Geneve, Switzerland
YRWTH Aachen, III. Physikalisches Institut A, 52056 Aachen, Germany
Available online 7 December 2005
Abstract

A well-designed Graphical User Interface (GUI) has critical importance in any computer application. The user interface is where the
end users and the complex system intersect. An effective interface design can make a powerful and complex system, such as ROOT, easy
and intuitive to learn and operate. This paper describes the main goals we defined and the design solution we found developing the

graphics editor in ROOT.
© 2005 Elsevier B.V. All rights reserved.

PACS: 01.05.hv; 07.05.Wr; 07.05.Rm; 07.05.kf

Keywords: Object-oriented user interface; ROOT framework; Data analysis; Graphics editor; Data visualisation; GUI

1. Introduction

ROOT as a high-energy physics (HEP) analysis frame-
work provides a large selection of HEP specific objects and
utilities. The graphical capabilities of ROOT range from
2D primitives to various plots, histograms, and 3D
graphical objects. All objects are drawn in a canvas or
more generally, in a pad, which is a graphical container
that holds them. Each pad has a linked list of pointers to
the objects it holds. The ROOT software provides all
methods for changing the graphical objects attributes
programmatically. A graphics editor for setting them
interactively was missing.

1.1. Main goals

The object-oriented ROOT framework [1] offers con-
siderable benefits for developing an object-oriented user
interface. But, the large set of all HEP specific objects
makes it impossible to design a unique and complex
interface for everything that can be drawn in a ROOT
canvas. The only way to manage this complexity is to split
it into discrete units and organize them to handle the user’s

*Corresponding author. Tel.: +41227676522; fax: +41227670300.
E-mail address: ilka.antcheva@cern.ch (I. Antcheva).

0168-9002/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
do0i:10.1016/j.nima.2005.11.113

actions. The main purpose of the graphics editor evolved to
respond dynamically to user actions while keeping the
users focused on the objects. It should provide a
comfortable and efficient environment where ROOT users
can get their work done.

1.2. Focus on users

There are two important steps in the GUI design
process: identifying users and supporting different user
classes. Various schemes have been proposed to classify the
different and changing characteristics of users from one
time to another. We consider four different classes of
ROOT users. The words we use to describe them are less
important than the behavioral characteristics they imply.

Novices (for a short time) have theoretical understanding
and no practical experience with ROOT. They are
impatient with learning concepts, but patient when
performing tasks.

Advanced beginners (many people remain at this level)
focus on a few tasks and learn more on a need-to-do basis.
They perform several given tasks very well.

Competent performers (fewer than previous class) know
and perform complex tasks that require coordinated
actions. They are interested in solving problems and
tracking down encountered errors.


www.elsevier.com/locate/nima

18 L Antcheva et al. | Nuclear Instruments and Methods in Physics Research A 559 (2006) 17-21

Experts (identified by others) are able to find solutions in
a complex functionality. They are interested in the theory
behind the design. Very often they search for a way of
interacting with other expert systems. The great feature of
the graphics editor design was to provide a shorter learning
curve for the novices and the depth required by the
experienced users.

2. Design solution

Everything drawn in a ROOT canvas is an object. There
are classes for all objects, and they fall into hierarchies. In
addition, the ROOT framework has a set of classes for
developing GUIs. These classes are fully cross-platform
and provide all standard components for an application
environment with Windows “look and feel”. The object-
oriented, event-driven programming model supports the
modern signals/slots communication mechanism (as pio-
neered by Trolltech’s Qt [2]). It handles user interface
actions and allows total independence of interacting objects
and classes. This mechanism uses the ROOT dictionary
information and the CINT interpreter [3] to connect signals
to slots methods.

Therefore, all necessary elements for an object-oriented
editor design are in place. In addition, that design gives the
possibility for solving the editor complexity by splitting it
into discrete units of so-called object editors. Any object
editor provides an object specific user interface. The main
purpose of the graphics editor is the organization of the
object editors appearance and the task sequence between
them.

Analyzing all the possibilities provided by the ROOT
framework, we decided to follow a simple naming
convention: to use as the name of any object editor the
object class name concatenated with ‘Editor’ (e.g. for
TGraph objects the object editor is TGraphEditor. Thanks
to the signals/slots communication mechanism and to the
method DistanceToPrimitive() that computes a “distance”
to an object from the mouse position, it was possible to
implement a signal method of the canvas that says which is
the selected object and to which pad it belongs. Having this
information the graphics editor loads the corresponding
object editor and the user interface is ready for use. This
way after a user click on ‘axis’—the axis editor is active, on
a ‘pad’—the pad editor, on a ‘histogram’—the histogram
editor, etc.

The algorithm we use is simple and is based on the
object-oriented relationship and communication. When the
user activates the editor, according to the selected object
obj in the canvas it looks for a class name objEditor. For
that reason the correct naming is very important. If a class
with this name is found, the editor verifies that this class
derives from the base editor class TGedFrame. If all checks
are satisfied the editor makes an instance of the object
editor using the method TROOT:: ProcessLine. Then, it
scans all object’s base classes searching the corresponding

object editors. When it finds one, it makes an instance of
the base class object editor too.

Every instantiated object editor is registered in the editor
list of T'Class. Once the object editor is in place, it sets the
user interface elements according to the object’s status.
After that it is ready to interact with the object following
the user actions.

The base editor’s class TGedFrame is designed with all
necessary characteristics of object editors: to hide and show
itself; to apply user changes with immediate feedback; to
update user interface elements following the object
changes, etc.

The complexity of the software system remains hidden
into the code. The editor interface is easier to design and
adapted to the users’ profiles. It keeps users focused on
objects, not on how to carry out actions.

The graphics editor gives an intuitive way to edit objects
in a canvas with immediate feedback. Related actions work
the same way and reinforce the understanding of the
functions it provides. Complexity of some object editors is
reduced by hiding GUI elements and revealing them only
on users’ requests.

The graphics editor in ROOT can be embedded or
global. The embedded editor is connected only with one
canvas and it shows up on the left side of the canvas
window (Fig. 1). It provides the user interface for the
selected object. If there is no selected object at that
moment, the editor provides the GUI for editing the canvas
itself. Users can toggle the graphics editor selecting the
Editor in the canvas View menu.

An object in the canvas is selected by clicking on it with
the left mouse button. Its name is displayed on the top of
the editor frame with a set of GUI elements ready for
object interaction. If the editor frame needs more space
than the canvas window, a vertical scroll bar appears for
easy navigation.

The global editor (Fig. 2) has its own application
window. It can be connected to any canvas created in a
ROOT session. It shows up via the object’s context menu
available after the right mouse click on an object in the
canvas.

3. Editor design elements

The look and feel, as well as the conceptual organization
are the three basic elements of any interface design. The
“look and feel” elements are closely related. The quality of
the output, whether or not the user produces meaningful
results depends on the conceptual eclements and the
relationship between them.

3.1. The “Look”
The graphics editor appears immediately uncluttered and

well-organized. It has a dynamic layout that plays around
with the editor frame layout at run time. It recalculates the



Download English Version:

https://daneshyari.com/en/article/1833000

Download Persian Version:

https://daneshyari.com/article/1833000

Daneshyari.com


https://daneshyari.com/en/article/1833000
https://daneshyari.com/article/1833000
https://daneshyari.com

