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Neural network approach to parton distributions fitting
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Abstract

We will show an application of neural networks to extract informations on the structure of hadrons. A Monte Carlo over experimental

data is performed to correctly reproduce data errors and correlations. A neural network is then trained on each Monte Carlo replica

via a genetic algorithm. Results on the proton and deuteron structure functions and on the nonsinglet parton distribution will be

shown.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The requirements of precision physics at hadron colliders
have recently led to a rapid improvement in the techniques
for the determination of the structure of the nucleon.
Playing this game factorization is a crucial issue. Indeed, it
ensures that we can extract the parton structure of the
nucleon from a process with only one initial proton (say,
Deep Inelastic Scattering at HERA), and then we can use
this as an input for a process where two initial protons are
involved (Drell-Yan at LHC). In the QCD improved
parton model the DIS structure function of the nucleon can
be written as

F2ðx;Q
2Þ ¼ x

Xnf

q¼1

e2qC
q � qqðx;Q

2Þ þ 2nf C
g � gðx;Q2Þ

" #

(1)

where Q2 ¼ �q2 ¼ �ðk � k0Þ2, x ¼ Q2=2p � q, and p, k and
k0 are the momenta of the initial nucleon, the incoming
lepton, and the scattered lepton, respectively; Ci are the
coefficient functions pertubatively calculable, qqðx;Q

2Þ and
gðx;Q2Þ the quarks and the gluon distributions that
describe the nonpertubative dynamics, the so called Parton
Distribution Functions (PDFs).
The extraction of a PDF from experimental data is not

trivial, even if it is a well-estabilished task. In order to do
that we have to evolve the PDFs to the scale of data,
perform the x-convolution, add theoretical uncertainties
(resummation, nuclear corrections, higher twist, heavy
quark thresholds, . . . ), and then deconvolute in order to
have a function of x at a common scale Q2.
Recently, it has been pointed out that the uncertainty

associated with a PDFs set is crucial [1–3]. The uncertainty on
a PDF is given by the probability density P½f � in the space of
functions f ðxÞ, that is, the measure we use to perform the
functional integral that gives us the expectation value

hF½f ðxÞ�i ¼

Z
DfF½f ðxÞ�P½f ðxÞ� (2)
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where F½f � is an arbitrary function of f ðxÞ. Thus, when we
extract a PDF we want to determine an infinite-dimensional
object (a function) from finite set of data points, and this is a
mathematically ill-posed problem.

The standard approach is to choose a simple functional
form with enough free parameters ðqðx;Q2

0Þ ¼ xað1� xÞb

PðxÞÞ, and to fit parameters by minimizing w2. Some
difficulties arise: errors and correlations of parameters
require at least fully correlated analysis of data errors;
error propagation to observables is difficult: many
observables are nonlinear/nonlocal functional of para-
meters; theoretical bias due to choice of parametrization is
difficult to assess (effects can be large if data are not precise
or hardly compatible).

Here, we present an alternative approach to this
problem. First, we will show our technique applied to the
determination of the Structure Functions. This is the
easiest case, since no evolution is required, but only data
fitting, thus it is a good application to test the technique.
Then, we will show how this approach can be extended for
the determination of the PDFs.

2. Structure functions

The strategy presented in Refs. [4,5] to address the
problem of parametrizing deep inelastic structure functions
F ðx;Q2Þ is a combination of two techniques: a Monte
Carlo sampling of the experimental data and a neural
network training on each data replica.

The Monte Carlo sampling of experimental data is
performed generating Nrep replicas of the original Ndat

experimental data,

F
ðartÞðkÞ
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ðkÞ
N sN Þ F

ðexpÞ
i þ r

s;ðkÞ
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XNsys
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(3)

where i ¼ 1; . . . ;Ndat, r are Gaussian random numbers
with the same correlation as the respective uncertainties,
and sstat;ssys;sN are the statistical, systematic and normal-
ization errors. The number of replicas Nrep has to be large
enough so that the replica sample reproduces central
values, errors and correlations of the experimental data.

The second step is to train a neural network on each data
replica. A neural network [6] is a highly nonlinear mapping
between input and output patterns as a function of its
parameters. We choose an architecture with four inputs (x,
log x, Q2, logQ2), two hidden layers with five and three
neurons, respectively, and one output, F ðx;Q2Þ. The
training on each replica is performed in two steps. First,
we use the Back Propagation technique to minimize

w2ðkÞdiag ¼
1

Ndat

XNdat

i¼1
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i � F

ðnetÞðkÞ
i Þ

2
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(4)

then, we use the Genetic Algorithm [7] to minimize

w2ðkÞ ¼
1

Ndat

XNdat

i;j¼1
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ðnetÞðkÞ
j Þ. ð5Þ

The Back Propagation technique allows for a fast
minimization, but it always oscillates, while the Genetic
Algorithm is always decreasing, and it is more suitable for
the last part of the training where the stability of the w2 is
needed, see Fig. 1. Once we have trained all the neural
networks on data replicas, we have a probability density in
the space of structure functions, P½F ðx;Q2Þ�, which
contains all information from experimental data, including
correlations. Expectation values over this probability
measure are then evaluated as averages over the trained
network sample,

hF½F ðx;Q2Þ�i ¼

PNrep

k¼1FðF
ðnetÞðkÞðx;Q2ÞÞ

Nrep
. (6)

In Fig. 2 we show our results1 for the deuteron structure
function F d

2ðx;Q
2Þ [4], and for the proton structure

function F
p
2ðx;Q

2Þ [5] compared to a polynomial parame-
trization [8]. We observe that in the data range the two fits
agree within errors. In the extrapolation region the error
band of the polynomial fit has the same narrow width as in
the data range, while the error band of the neural networks
grows indicating that we are in a region where the error is
underterminate since there are no data.
Neural networks turn to be a suitable tool also in the

presence of uncompatible data. Indeed, once a good fit is
obtained, say a stable value of w2�1, the neural networks
infer a natural law by following the regularity of data, and
uncompatible data are discarded without any hypothesis
on the shape of the parametrization (see Fig. 3).
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Fig. 1. Dependence of the w2 on the length of training: (big pad) total

training (small pad), detail of the GA training.

1The source code, driver program and graphical web interface for our

structure function fits is available at http://sophia.ecm.ub.es/

f2neural.
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