
Nuclear Instruments and Methods in Physics Research A 559 (2006) 306–309

Recent developments in parallelization of the multidimensional
integration package DICE

F. Yuasaa,�, K. Tobimatsub, S. Kawabataa

aHigh Energy Accelerator Research Organization, KEK, 1-1 OHO Tsukuba, Ibaraki 305-0801, Japan
bKogakuin Univ., 1-24-2 Nishi-Shinjuku, Shinjuku-ku, Tokyo 163-8677, Japan

Available online 22 December 2005

Abstract

DICE is a general purpose multidimensional numerical integration package. There can be two ways in the parallelization of DICE,

‘‘distributing random numbers into workers’’ and ‘‘distributing hypercubes into workers’’. Furthermore, there can be the combination of

both ways. So far, we had developed the parallelization code using the former way and reported it in ACAT2002 in Moscow. Here, we

will present the recent developments of parallelized DICE in the latter way as the 2nd stage of our parallelization activities.

r 2006 Elsevier B.V. All rights reserved.

PACS: 02.60.Jh

Keywords: Parallel computing; Multidimensional numerical integration; Monte Carlo integration; DICE; MPI

1. Introduction

Recently it is not rare to calculate the cross-sections of
the physics processes with over 6 final state particles in the
tree level. In such calculations, there may appear singula-
rities close to diagonal integral region and sometimes it is
very difficult to find a good set of variable transformations
to get rid of the singularities. For the one-loop and beyond
the one-loop physics processes, when we try to carry out
the loop calculation only in the numerical approach, we
need several multidimensional integration packages or
another integration method to compare the numerical
results to check them. For such a request, DICE has been
developed by Tobimatsu and Kawabata. It is a general
purpose multidimensional numerical integration package.

1.1. The non-parallelized version of DICE

The first version of DICE [1] appeared in 1992 and is a
scalar program code. In DICE, the integral region is
divided into 2Ndim hypercubes repeatedly according to the
division condition. To evaluate the integral and its variance

in each hypercube, DICE tries two kinds of sampling
methods, a regular sampling and a random sampling as

1. Apply regular sampling and evaluate the contribution.
And then check the division condition is satisfied or not.

2. Apply 1st random sampling and evaluate the contribu-
tion.
And then check the division condition is satisfied or not.

3. Apply 2nd random sampling and evaluate the contribu-
tion.

For an integrand with singularities the number of above
repetitions becomes huge so rapidly and the calculation
time becomes a long time. To reduce the calculation time,
the vectorized version of DICE (DICE 1.3Vh [2]) has been
developed in 1998 for vector machines. In the vector
program code, the concept of workers and the queuing
mechanism are introduced. This vectorized DICE has
succeeded in reducing the calculation time for the integra-
tion even when the integrand has strong singularities.
Today, however, the vector processor architecture

machines have dropped off and instead the parallel
processor architecture machines have become common
in the field of high energy physics. Moreover, the

ARTICLE IN PRESS

www.elsevier.com/locate/nima

0168-9002/$ - see front matter r 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.nima.2005.11.218

�Corresponding author. Tel.: +8129 8645479.

E-mail address: fukuko.yuasa@kek.jp (F. Yuasa).

www.elsevier.com/locate/nima


cost-effective PC clusters running Linux with a distributed
memory or a shared memory are widely spread. Thanks to
this rapid rise of PC clusters with the parallel library such
as MPI [3] or with OpenMP [4], the parallel programming
is very familiar to us.

2. Parallelization

2.1. Profile of DICE

To get a good efficiency in the parallelization, it is
important to know which routines are time-consuming.
UNIX command gprof is a useful tool to know it. Table 1
shows an example output of gprof command for the
calculation of the integration by the non-parallelized
DICE. This calculation is done on the Alpha 21264
processor (700MHz clock speed) machine running Linux
and the compiler used is Compaq Fortran. In Table 1, the
most time-consuming routine is elwks and is called in
func. In elwk and func the integrand function is given.
The subroutine func is called repeatedly in regular,
random1 and random2 to evaluate the integrand. Here,
vbrndm is a routine to generate random numbers and is
called in both random1 and random2.

In summary, it is expected that distributing the calcula-
tions in random1 and random2 into workers (processors)
may be efficient to reduce the calculation time.

2.2. Algorithm

For the integrand with strong singularities, the region is
divided into a large number of hypercubes and a large
number of random numbers are required to get the integral
results with the requested errors. Therefore, there can be
two ways in the parallelization, the way of distributing
random numbers and the way of distributing hypercubes to
workers.

As the 1st step we have started the parallelization of
DICE with the former way, distributing random numbers.
The schematic view of the algorithm with the former way is
shown in Fig. 1. There, it is shown how random numbers
are distributed into workers in random1 and random2.
The merit of this approach is not only that the algorithm is

very simple as shown in Fig. 1 but also that the overhead
due to the data transfer or the load unbalancing among
workers is small. The efficiency of this parallelization has
showed very good performance. The result of the efficiency
measurement by this parallelization way was presented at
ACAT2002 at Moscow [5].
As the 2nd step, here in this paper, we present the

parallelization with the latter way, distributing hypercubes
into workers. As the 3rd step, the final step, we have a plan
of the combination of both ways.

3. Implementation

In this parallelization, hypercubes are distributed into
workers. After the evaluation, the results are gathered to
the root process (for example, worker 1). And then the root
process scattered the results to all workers. In Fig. 2, a
schematic view of how calculations are distributed into
workers is shown.
In our implementation we use Fortran compiler since

DICE is written in Fortran and we chose MPI [3] as the
parallel library.

ARTICLE IN PRESS

Table 1

gprof output: flat profile of non-parallelized DICE

Time (%) Cumulative time (s) Self time (s) Calls Self (m/call) Total Name of routines

82.95 7.60 7.60 26214 0.29 0.29 elwks_

12.41 8.73 1.14 26214 0.04 0.33 func_

2.52 8.96 0.23 3072 0.08 0.08 vbrndm_

0.93 9.05 0.08 1536 0.06 2.80 random2_

0.92 9.13 0.08 1536 0.05 2.79 random1_

0.13 9.14 0.01 1638 0.01 0.34 regular_

This calculation of the integration is done on the Alpha 21264/700MHz machine by the Compaq Fortran for Linux. Total CPU time required was 9.16 s in

total. This integration was done with expected error ¼ 10%.

n1 n2 n3 n4

w1 w2 w3 w4

Fig. 1. Schematic view of the algorithm of parallelized DICE with

distributing the random numbers into workers, w1, w2, w3 and w4, for

example. Each worker is responsible for the part of random numbers in

the routines, random1 and random2. The total number of random

numbers is the sum of random numbers treated in each worker as

Ntotal ¼ n1þ n2þ n3þ n4.

F. Yuasa et al. / Nuclear Instruments and Methods in Physics Research A 559 (2006) 306–309 307



Download	English	Version:

https://daneshyari.com/en/article/1833065

Download	Persian	Version:

https://daneshyari.com/article/1833065

Daneshyari.com

https://daneshyari.com/en/article/1833065
https://daneshyari.com/article/1833065
https://daneshyari.com/

