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A B S T R A C T

Despite the numerous use of the constant phase element (CPE) in the modeling of the impedance
characteristics of the electrochemical systems, the physical reasoning of this non-intuitive element is not
clear. In this paper, the CPE impedance is analytically calculated using the anomalous diffusion theory.
The fractional calculus and the anomalous diffusion are first reviewed. It is shown that the chance
inequality in the random walk in a porous media can result in an anomalous diffusion. Then, the
Boltzmann distribution of the particles used in the Gouy-Chapman theory of the double layer is modified
to determine the double layer capacitance. Finally, the impedance of the double layer is calculated which
is equivalent to the CPE impedance reported in literature. It is shown that this novel theory covers the
interpretations previously presented for the CPE and its relation to the fractal dimension and the pore
size distribution of the porous media.

ã 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The Nyquist plots resulted from the impedance measurements
of different electrochemical systems such as biological membranes
[1], muscles [2] and a solid and porous electrode/electrolyte
interface [3–5] reveal an impedance plot which cannot be obtained
by a combination of ordinary electrical elements (e.g., resistances
and capacitances). While the parallel connection of a capacitor and
a resistor results in a semi-circle in the Nyquist plot which is
symmetric around abscissa (i.e., the center of the semi-circle is on
the x-axis), the measured Nyquist plots consist of depressed semi-
circle whose center is below the x-axis. These curves can be
produced by a parallel combination of an ordinary resistance and a
non-intuitive element called ‘constant phase element’ (CPE) which
has the impedance in the form of

ZCPE ¼ 1
QðjvÞa ð1Þ

where v is angular frequency and j ¼
ffiffiffiffiffiffiffi
�1

p
. Here, a is a non-

dimensional number called the CPE power and 0 < a < 1. Clearly,
the CPE becomes an ordinary capacitance if a ¼ 1. Also, the CPE
impedance becomes independent of the frequency and CPE
responds as a plain resistance if a ¼ 0. Also, a ¼ 1=2 and a ¼
�1 result in Warburg and inductive elements, respectively. The
farther the a parameter from unity, the more depressed the

resultant semi-circle in the Nyquist plot. The Q parameter in Eq. (1)
is referred to as the magnitude of the CPE. Unlike the plain
capacitor (which has the unit of Farad (F)), the parameter Q in
Eq. (1) has the unit of Fsa�1, where s stands for seconds.

There is no consensus about the physics behind the CPE in
literature [3]. The CPE power (a) has been reported to be a function
of the surface roughness [6], fractal dimension [7,8] or the pore size
distribution [9] of the porous electrode. However, it has mostly
assumed to be related to different time constants of the processes
occurring in the porous electrode [e.g.,10–18]. The Voigt model
(representing an equivalent circuit consisting of a series of blocks
of resistors and capacitors that are connected in parallel) is
normally used as a measurement model to study the CPEs
[e.g.,12,13]. While the Voigt model is an effective tool, it cannot
represent the fundamentals of the origin of the CPEs. This can be
explained as follows: the Voigt model can be well fitted (with any
desired accuracy) to the CPE curve (in the Nyquist plot) by adding
enough elements (e.g., resistors and capacitors) to the model. Each
combined resistor and capacitor block in the Voigt model can be
interpreted as a phenomenon with a specific time constant.
However, this does not mean that the CPE is originally the result of
these phenomena and time constants. In other words, the Voigt
model can only present the CPE mathematically, but not physically.
It is necessary to mention that any impedance measurement which
results in a curve in the Nyquist plot can theoretically be fitted
using the Voigt model [19].

In this paper, the physics behind the origin of the CPE is
presented using the anomalous diffusion concept [20]. As a result,* Corresponding author. Fax: +1 250 807 9850.
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the well-known impedance relation of the CPE (Eq. (1)) is derived.
It is shown that this new approach is a comprehensive framework
covering all the previously mentioned interpretations [6–9] of the
physics of the CPE. To obtain the CPE impedance relation, the
double-layer theory is needed to be reconsidered using the
anomalous diffusion theory which itself needs the fractional
calculus introduction. As this framework is not normally discussed
in the CPE literature, the fractional derivative concept is first briefly
introduced. The anomalous diffusion and the random walk theory
are then briefly reviewed. The Gouy-Chapman theory of the
double-layer concept is then revisited using the anomalous
diffusion concept. Finally, the CPE impedance is calculated. More
specifically, the CPE power (a) is shown to be equal to the
anomalous diffusion power (n).

2. Fractional derivative

The Fourier transform of the nth-order derivative of a function
f ðtÞ is written as

= dnf ðtÞ
dtn

� �
¼ jvð ÞnFðvÞ ð2Þ

where = f ðtÞf g ¼ FðvÞ is the Fourier transform. While n is normally
considered as a natural number, relations similar to Eq. (2) can be
introduced to define nth-order derivative for real numbers (also
referred to as fractional derivative). In fact, this concept (first
presented by Leibniz in 1695 [20]) is older than Fourier transform
itself, as old as the normal derivation concept. The Riemann-
Liouville version of the n th-order fractional derivative of a function
f ðtÞ is defined as [e.g.,20]

Dn
t f ðtÞ ¼ 1

Gðp � nÞ
dp

dtp

Z t

0

f ðxÞ
ðt � xÞ1�pþndx ð3Þ

where p is an integer number such that p � 1 < ReðnÞ � p and G
denotes the gamma function. For 0 < n < 1, this operator can be
simplified as

Dn
t f ðtÞ ¼ 1

Gð1 � nÞ
d
dt

Z t

0

f ðxÞ
ðt � xÞndx ð4Þ

As an example, the fractional derivative of a power function can
be determined as [21]

Dn
t t

k ¼ Gðk þ 1Þ
Gðk þ 1 � nÞt

k�n ð5Þ

which is in agreement with the normal derivative definition when
n is a natural number. Fig. 1 shows different natural and fractional
derivatives of a sample function (y ¼ x3). While the first (and
second) derivative operators are normally considered as basic tools
to calculate the slope (and curvature) of a function, those can also
be interpreted as discrete operators which convert a function to
another function, and the latter function is called the derivative of
the former one. Roughly speaking, this concept of fractional
derivative is used to convert this discrete operator to a continuous
one. As an example, Fig. 1 depicts that all the functions resulted
from n th-order fractional derivation of the function y ¼ x3 will lie
between the y ¼ x3 and y ¼ d

dxðx3Þ ¼ 3x2 curves for 0 < n < 1 for
positive x values.

Finally, the following two properties of the Riemann-Liouville
fractional derivative are specifically needed to be mentioned here
[21]

Dn
t 1 ¼ 1

Gð1 � nÞt
�n ð6Þ

Dn
t t

n�1 � 0 ð7Þ

3. Anomalous diffusion and random walk theory

Random walk theory is in fact a framework which relates the
Brownian motion to the diffusion equation. The random walk
theory describes the transport rate of a particle which moves
completely randomly in each time step (see Ref. [20] for the history
of the theory). Using this theory, the mean square displacement of
a particle at a time t can be estimated to be [22]

x2ðtÞ
E
¼ 2Lt

D
ð8Þ

where L is the diffusion coefficient. This linear dependence of the
mean square displacement to the time is a characteristic of the
Brownian motion [20]. However, the physical systems do not
always obey the above-mentioned relation; thus, the mean square
displacement has to be generalized in the following form:

x2ðtÞ
E
� tn

D
ð9Þ

This model of transport is called anomalous diffusion. Specifically,
it is called subdiffusion if 0 < n < 1 (slower than normal diffusion)
and superdiffusion if n > 1 (faster than normal diffusion). There is
an extensive range of physical systems which show subdiffusive
and superdiffusive characteristics [20]. For instance, the charge
transfer in semiconductors and transport in fractal structures and
porous media show subdiffusive characteristics. On the other hand,
turbulent diffusion, bacterial motion and quantum optics are just
examples of superdiffusion transport. For the reasons which will
be clear hereafter, the subdiffusion process is in special interest
here.

In addition to Eq. (9), other interpretations have also been
presented for the subdiffusion power n . In a fractal dimension, the
power n can be shown to be [23,24]

n ¼ ds
df

which ds and df are spectral (fracton) and fractal dimensions of the
structure, respectively [24]. Using the continuous time random
walk theory, another interpretation of n can be obtained. The
continuous time random walk theory is in fact the extension of
the random walk theory in which the length of the jumps of the
particle and also the waiting time between each jump is obtained

Fig. 1. The natural and fractional derivatives of the example function y ¼ x3.
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