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Abstract

In the future, accelerators with very short bunches will be used. It demands developing new numerical approaches for long-time

calculation of electromagnetic fields in the vicinity of relativistic bunches. The conventional FDTD scheme, used in MAFIA, ABCI and

other wake and PIC codes, suffers from numerical grid dispersion and staircase approximation problem. As an effective cure of the

dispersion problem, a numerical scheme without dispersion in longitudinal direction can be used as it was shown by Novokhatski et al.

[Transition dynamics of the wake fields of ultrashort bunches, TESLA Report 2000-03, DESY, 2000] and Zagorodnov et al. [J. Comput.

Phys. 191 (2003) 525]. In this paper, a new economical conservative scheme for short-range wake field calculation in 3D is presented. As

numerical examples show, the new scheme is much more accurate on long-time scale than the conventional FDTD approach.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Computation of wake fields of short relativistic bunches
in long structures remains a challenging problem even with
the fastest computers available. It demands developing new
numerical approaches for long-time calculation of electro-
magnetic fields. The conventional FDTD scheme [3], used
in MAFIA [4] and other wake and Particle-In-Cell (PIC)
codes, suffers from numerical grid dispersion and the
staircase approximation problem. As an effective cure of
the dispersion problem, a numerical scheme without
dispersion in the longitudinal direction can be used as it
was shown in Refs. [1,2].

In this paper, a new two-level economical conservative
scheme for short-range wake field calculation in three
dimensions is presented. The scheme does not have
dispersion in the longitudinal direction and is staircase
free (second-order convergent). Unlike the FDTD method
[3] and the scheme developed in Ref. [2], it is based on a
transversal electric–transversal magnetic (TE/TM)-like
splitting of the field components in time. Additionally, it

uses an enhanced alternating direction splitting of the
transverse space operator that makes the scheme as
computationally effective as the conventional FDTD
method. Unlike the FDTD ADI method, the splitting
error in our scheme is only of the fourth order. As
numerical examples show, the new scheme is much more
accurate on the long-time scale than the conventional
FDTD approach. For axially symmetric geometries, the
new scheme performs at least two times faster than the
scheme suggested in Ref. [2] achieving the same level of
accuracy.

2. Formulation of the problem

At high energies, the particle beam is rigid. To obtain the
wake field, the Maxwell equations can be solved with a
rigid particle distribution. The influence of the wake field
on the particle distribution is neglected here; thus, the
beam-surroundings system is not solved self-consistently
and a mixed Cauchy problem should be considered.
The problem reads: for a bunch moving with the velocity

of light c and characterized by a charge distribution r, find
the electromagnetic field ~E; ~H in a domain O which is
bounded transversally by a perfect conductor qO. The
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bunch introduces an electric current ~j ¼ ~cr and thus we
have to solve

r � ~H ¼
q
qt
~Dþ~j; r � ~E ¼ �

q
qt
~B; r � ~D ¼ r,

r � ~B ¼ 0, ð1Þ

~H ¼ m�1~B; ~D ¼ e~E; ~Eðt ¼ 0Þ ¼ ~E0,

~Hðt ¼ 0Þ ¼ ~H0; x 2 O,

~n� ~E ¼ 0; x 2 qO.

3. Implicit numerical scheme

Following the matrix notation of the finite integration
technique (FIT) [5], the Cauchy problem (1) can be
approximated by the time-continuous matrix equations:

C e

�

¼ �
d

dt
b

��

; C� h

�

¼
d

dt
d

��

þ j

��

; S b

��

¼ 0,

S� d

��

¼ q; e

�

¼Me�1 d

��

; h

�

¼Mm�1 b

��

. ð2Þ

With changing of variables, system (2) reduces to the
skew-symmetric one:

d

dt
e ¼ C�0hþ j;

d

dt
h ¼ �C0e; e ¼M

�1=2
e�1 e

�

,

h ¼M
�1=2
m�1 h

�

; j ¼M
1=2
e�1 j

��

; t ¼ ct. ð3Þ

System (3) is a time-continuous and space-discrete

approximation of problem (1). The next step is a
discretization of the system in time. The field components
can be split in time and the ‘‘leap-frog’’ scheme can be
applied. Below two kinds of the splitting are considered:
electric–magnetic (E/M) and TE/TM schemes.

As suggested by Yee [3], the E/M splitting of the field
components yields the explicit FDTD scheme (E/M
scheme):

enþ0:5 ¼ en�0:5 þ DtC�0h
n þ Dt jn,

hnþ1 ¼ hn � DtC0e
nþ0:5. ð4Þ

Scheme (4) is a two-layer scheme:

B
ynþ1 � yn

Dt
þ Ayn

¼ fn; B ¼
I 0

DtC0 I

 !
,

A ¼
0 �C�0

C0 0

 !
; yn ¼

en�0:5

hn

 !
; fn ¼

jn

0

 !
.

Discrete energy of electromagnetic fields can be defined
as

En
E=M ¼ 0:5h½B� 0:5DtA�yn; yni

¼ 0:5ðhen�0:5; en�0:5i þ hhn; hn�1iÞ. ð5Þ

If the right-hand side vanishes, then the scheme is energy
conserving En

E=M ¼ E0
E=M.

Scheme (4) is widely used in electromagnetic modeling.
However, the FDTD algorithm causes non-physical dispersion
of the simulated waves in a free-space computational lattice.
Why is zero dispersion for a special direction important?

Unlike plasma problems, the charged particles in accelerators
are organized and a direction of motion (the longitudinal
direction) can be identified. Hence, the computational
domain is very long in the longitudinal direction and
relatively short in the transverse plane. Additionally, the
electromagnetic field changes very fast in the direction of
motion but is relatively smooth in the transverse plane.
To find the scheme, let us consider Fig. 1 and subdue an

update procedure to the motion of the bunch. We suggest
that a charged particle is moving in the z-direction with
velocity of light. Additionally, let us suggest that our
numerical scheme allows to take a time step Dt equal to the
mesh step Dz in the z-direction. If at the time t0 the particle
has the position aligned with the left z-facet of the primary
grid (see Fig. 1), then in the time t0 þ 0:5Dt, it will be
aligned with the left z-facet of the dual grid and in the time
t0 þ Dt, it will be again aligned with the next z-facet of the
primary grid. It suggests that we should replace the E/M
time splitting of the field components in scheme (4) by a
more adequate TE/TM splitting. Indeed, in the time t0, it is
reasonable to update the TM components ex; ey; hz and the
half time step later, namely in time t0 þ 0:5Dt, we have to
update the TE components hx; hy; ez.
Following the above consideration, let us rewrite scheme

(4) in the equivalent form:

d

dt
u ¼ D11uþD12vþ ju,

d

dt
v ¼ D22v�D�12uþ jv ð6Þ

where u ¼ ðhy; hy; ezÞ
T and v ¼ ðex; ey; hzÞ

T.
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Fig. 1. Positions of the relativistic charged particle in the FIT grid in

different moments of time. The time step is chosen equal to the

longitudinal mesh step.
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