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a b s t r a c t

Allowed transition energies and eigenstate expansions have been calculated and tabulated in numerical
form as functions of the electric field gradient asymmetry parameter for the zero field Hamiltonian of
quadrupolar nuclides with I = 3/2, 5/2, 7/2, and 9/2. These results are essential to interpret nuclear
quadrupole resonance (NQR) spectra and extract accurate values of the electric field gradient tensors.
Applications of NQR methods to studies of electronic structure in heavy element systems are proposed.
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1. Introduction

Nuclear quadrupole resonance (NQR) spectroscopy has long
been a vital method for studying electronic structure in condensed
matter [1,2] and for performing high resolution measurements of
nuclear quadrupole moments [3–5]. The key parameter obtained
from NQRmeasurements is the electric field gradient (EFG) tensor
at the nuclear coordinates, which is completely determined by two
independent variables, viz., the zz component of the field gradient
Vzz ≡ ∂2φ/∂z2 and the tensor’s asymmetry parameter η ≡ (Vxx −

Vyy)/Vzz [2,6].
The dependence of NQR transition frequencies and intensities

on the EFG tensor has been numerically mapped [7–11]. Values for
η and Vzz may be estimated from experimentally measured NQR
spectra by referring to data from this previous work. However, the
approximation methods used in past calculations did not provide
accurate or complete results for many cases of interest, and a
more advanced and comprehensive analysis is needed for reliable
interpretation of experimental spectra, especially for large η and
spin quantum numbers I .

Computational formalisms have recently been described that
may be used to characterize the dependence of NQR spectra on η
and Vzz with substantially improved accuracy and detail [12,13].
Themethods are generalizable to arbitrary spin quantumnumber I ,
but themajority of nuclei that are of interest for NQR spectroscopy
have half-integer spin, i.e., I = 3/2, 5/2, 7/2, etc., 14N with I = 1
being a notable exception. To demonstrate this approach therefore
while providing data of greatest value for the interpretation of
NQR experiments, quadrupolar nuclideswith half-integral spin are
considered exclusively in this paper.

2. Computational method

The zero field spin Hamiltonian of a quadrupolar nuclide in the
principal axis system (PAS) of the EFG tensor has the form [2,6]

HQ =
eQVzz

4I (2I − 1) h
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For η = 0, this Hamiltonian has the same eigenstates as the
operator Iz ; we write these states as |m⟩, with m representing the
eigenvalues of Iz , I ≥ m ≥ −I . The eigenstates of HQ may be
expressed more generally as a linear superposition of the basis
states with normalized complex coefficients that are functions of
η, namely

|ψn(η)⟩ =

I
m=−I

cnm(η)|m⟩, (2)

where |ψn(0)⟩ = |n⟩. Similarly, the eigenvalue of HQ correspond-
ing to the eigenstate |ψn(η)⟩ can be written as a function of η,
i.e., λn(η). Because of the bilinear I2

+
and I2

−
terms in Eq. (1b), the

only non-zero coefficients in Eq. (2) will be those withm = n±2q,
q being an integer.

Themixing of states for non-zero η is embodied by the complex
coefficients in the summation in Eq. (2), which can be written

cnk(η) = ⟨k|ψn(η)⟩, (3)

where |k⟩ is an eigenstate of Iz . A quantitative measure of the
superposition of |m⟩ states is the magnitude of cnk(η), given by the
expression

|cnk(η)| =

cnk(η)c∗

nk(η)
1/2

= |⟨k|ψn(η)⟩| . (4)

Plots of |⟨k|ψn(η)⟩| vs. η thus reveal the extent to which variation
of ηmixes the basis states in the expansion of |ψn(η)⟩.

To visualize the dependence of the eigenvalues and eigenstates
of HQ on η, it is necessary to explicitly solve for |ψn(η)⟩ and
λn(η) for a densely spaced array of η values over the allowed
range 1 ≥ η ≥ 0. Evaluation of the eigenvalues is considerably
simplified by observing that the matrix form of HQ in the Iz basis
can be arranged in a block diagonal form for I = p/2, p odd [7,9].
The calculations reported in this paper were performed with the
use of linear algebra functions provided within the Mathematica
programming environment [14].

Numerical diagonalization functions return the (2I + 1) com-
puted eigenvectors of a matrix in an order that may be unpre-
dictable. A procedure must therefore be devised to definitively
relate a given eigenvector |ψn(η)⟩ to its ‘‘parent’’ state |n⟩. Since
the eigenvectors are by definition orthonormal, the projection of
the kth basis vector onto |ψn(η0)⟩, η0 ∼ 0, should be close to unity
only if n = k and zero otherwise, that is

|⟨k|ψn(η0)⟩| ≈ δkn, (5)

where δkn is the Dirac delta function. This procedure may be it-
erated, beginning with η = 0 and evaluating the inner products
while incrementing the asymmetry parameter in steps of η0. The
criterion for deciding the parent state in the (p+1)th iterate in this
procedure would be:

|⟨ψk(pη0)|ψn((p + 1)η0)⟩| ≈ δkn, (6)

with p being incremented from 0 to (η−1
0 − 1). In this way, the

eigenstates and eigenvalues ofHQ can be unambiguously assigned
to their parent state for each pη0 increment from0 to 1, even for the
pairs of states |ψ±n(η)⟩, which are degenerate for spins with half
integral I . TheMathematica codes developed for this work incorpo-
rate this procedure to perform the sorting and assignment tasks in
an automated fashion.
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