Atomic Data and Nuclear Data Tables 101 (2015) 158-186

Contents lists available at ScienceDirect

Atomic Data and Nuclear Data Tables

ELSEVIER

iournal homepage: www.elsevier.com/locate/adt

Effective oscillator strength distributions of spherically symmetric atoms for calculating polarizabilities and long-range atom-atom interactions

Jun Jiang^{a,b,*}, J. Mitroy^b, Yongjun Cheng^{b,c}, M.W.J. Bromley^d

^a Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, PR China

^b School of Engineering, Charles Darwin University, Darwin, Northern Territory, 0909, Australia

^c Academy of Fundamental and Interdisciplinary Science, Harbin Institute of Technology, Harbin 150080, PR China

^d School of Mathematics and Physics, The University of Queensland, Brisbane, Queensland 4075, Australia

ARTICLE INFO

Article history: Received 30 May 2014 Received in revised form 23 October 2014 Accepted 23 October 2014 Available online 15 November 2014

Keywords: Effective oscillator strength distribution Dynamic polarizability Long-range interaction Oscillator strength sum- rule Dispersion coefficient

ABSTRACT

Effective oscillator strength distributions are systematically generated and tabulated for the alkali atoms, the alkaline-earth atoms, the alkaline-earth ions, the rare gases and some miscellaneous atoms. These effective distributions are used to compute the dipole, quadrupole and octupole static polarizabilities, and are then applied to the calculation of the dynamic polarizabilities at imaginary frequencies. These polarizabilities can be used to determine the long-range C_6 , C_8 and C_{10} atom–atom interactions for the dimers formed from any of these atoms and ions, and we present tables covering all of these combinations. © 2014 Elsevier Inc. All rights reserved.

^{*} Corresponding author at: Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, PR China.

Contents

1.	Intro	Introduction	
2.	Definitions		160
	2.1.	Oscillator strength sum-rules	160
	2.2.	Casimir-Polder relations	161
	2.3.	Quadrature rules for Casimir-Polder integrations	161
3.	Atomic models		162
	3.1.	Hydrogen	162
	3.2.	Core oscillator strength distributions for multi-electron atoms	162
	3.3.	General comment for the alkali atoms and alkali-like ions	163
	3.4.	Lithium	163
	3.5.	Sodium	163
	3.6.	Potassium	163
	3.7.	Rubidium	163
	3.8.	Cesium	163
	3.9.	Copper and silver	163
	3.10.	Be+	163
	3.11.	Mg ⁺	163
	3.12.	Ca ⁺	163
	3.13.	Sr ⁺	163
	3.14.	Ba ⁺	163
	3.15.	Beryllium	163
	3.16.	Magnesium	164
	3.17.	Calcium	164
	3.18.	Strontium	164
	3.19.	Barium	164
	3.20.	Helium (1s ²)	164
	3.21.	Neon, argon, krypton and xenon	164
	3.22.	He (1s2s ³ S ^e)	164
	3.23.	Overview	164
4.	Dynamic polarizability and dispersion coefficient tabulations		165
	4.1.	Real frequencies	165
	4.2.	Imaginary frequencies	165
	4.3.	Dispersion coefficients	165
	4.4.	Impact of finite precision tabulations	165
5.	Concl	Conclusion	
	Ackno	wledgments	165
	Apper	ndix A. Supplementary data	165
	Refer	ences.	165
	Expla	nation of Tables	167
	Ta	able 1. Multipole polarizabilities and atom-wall dispersion parameter for all atoms and ions	167
	Ta	able 2. The dipole, guadrupole, and octupole effective oscillator strength distributions.	167
	Ta	able 3. The dipole, guadrupole, and octupole dynamic polarizabilities of all atoms and ions (in a.u.)	167
	Ta	ble 4. The dispersion coefficients. $C_{\rm e}$. $C_{\rm s}$ and $C_{\rm 10}$ (in a.u.)	167

1. Introduction

The long-range interaction between two spherically symmetric atoms can be written in the general form [1-4]

$$V(R) \approx -\frac{C_6}{R^6} - \frac{C_8}{R^8} - \frac{C_{10}}{R^{10}} + \cdots,$$
 (1)

where the C_n parameters are the London/van der Waals dispersion coefficients. There are two complementary approaches to the computation of the dispersion coefficients. One approach uses oscillator strength sum-rules [5,6], while the second utilizes Casimir–Polder relations and uses the dynamic polarizabilities computed at imaginary energies [7,8]. These approaches can be regarded as complementary to each other.

The key to the first approach is to generate an oscillator strength distribution that incorporates excitations to bound excited states and to the continuum states. In practice, the oscillator strength distributions are best termed 'effective' oscillator strength distributions [9]. One might find that the lowest few excited states are accurately represented by the distribution, however the higher bound states and continuum states are approximated with a set of discrete effective oscillator strengths and energies. The oscillator strength distributions can be derived from *ab-initio*

structure calculations [10–12,4], experimental information such as refractive indices, atomic transition rates and photo-ionization cross sections [5,6], and sometimes both experimental and calculated oscillator strengths are used [12,13].

The Casimir–Polder relation is reliant on being able to calculate the dipole and multipole dynamic polarizabilities at imaginary frequencies. One way to calculate a dynamic polarizability is to use oscillator strength sum-rules in conjunction with a previouslydetermined oscillator strength distribution. An alternate approach is to directly compute the dynamic polarizability as part of a structure calculation [14–16]. The direct calculation of the dynamic polarizability is the preferred approach for structure calculations.

The present paper reports both effective oscillator strength distributions and dynamic polarizabilities for a number of spherically symmetric atoms and ions. The atoms presented are the noble gases, the alkali atoms and hydrogen, the singly-charged alkalineearth ions and the alkaline earth atoms. The long-range atom–atom interaction coefficients C_6 , C_8 and C_{10} are also presented for any dimer formed from these atoms and ions. A previous tabulation of dynamic polarizabilities for many of these atoms does exist [17]. This previous tabulation only gave the dynamic dipole polarizabilities, while the present tabulation extends this to the quadrupole and octupole polarizabilities that are needed in the evaluation of Download English Version:

https://daneshyari.com/en/article/1833784

Download Persian Version:

https://daneshyari.com/article/1833784

Daneshyari.com