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a b s t r a c t

Within the leading-order, single-active-electron, and frozen-nuclei approximation of the weak-field
asymptotic theory, the rate of tunneling ionization of amolecule in an external static uniform electric field
is determined by the structure factor for the highest occupiedmolecular orbital. We present the results of
systematic calculations of structure factors for 40 homonuclear and heteronuclear diatomic molecules by
the Hartree–Fock method using a numerical grid-based approach implemented in the program X2DHF.
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1. Introduction

The rate of tunneling ionization of atoms and molecules in an
external static uniform electric field is an important property re-
quired for many applications in atomic, molecular, and optical
physics. The current interest to this property is dictated by its ap-
plications in strong-field physics and attoscience [1], where tun-
neling ionization is the initial key process that triggers subsequent
dynamics [2,3]. In the adiabatic regime of main interest for such
applications, that is, at sufficiently low frequency and high inten-
sity, tunneling ionization in an oscillating laser field proceeds as if
the field were static and equal to its instantaneous value [4,5].

Recently, we have developed the weak-field asymptotic theory
(WFAT) of tunneling ionization [6]. This theory generalizes the ear-
lier treatments of tunneling ionization from spherically symmet-
ric atomic potentials [7–10] to molecular potentials without any
symmetry. In theWFAT, the ionization rate is sought as an asymp-
totic expansion in the field F . Such an approach is justified for suf-
ficiently weak fields satisfying F ≪ Fc , where Fc is a field at which
over-the-barrier ionization becomes accessible. Since for neutral
atoms and molecules in the ground state Fc ∼ 0.1 a.u., which cor-
responds to a laser intensity I ∼ 3.5 × 1014 W/cm2, the WFAT
applies to all truly static fields available in laboratories as well as
to the majority of intense low-frequency laser pulses used in cur-
rent experiments.

The leading-order term in the asymptotic expansion for the
ionization rate of an arbitrary molecule treated in the single-
active-electron (SAE) and frozen-nuclei (FN) approximations was
obtained in Ref. [6]. Under these approximations, tunneling ioniza-
tion occurs from the highest occupied molecular orbital (HOMO)
taken at the equilibrium internuclear configuration. The ioniza-
tion rate of a molecule depends on the field and orientation of the
molecule with respect to the field; these two dependences are of
main interest for applications. In the formula for the rate obtained
in Ref. [6] these dependences factorize. The field-dependent factor
is a simple analytic function of F and the ionization potential of the
HOMO. The orientation-dependent factor, given by the structure
factor squared, depends on the dipole moment of the HOMO and a
coefficient appearing in its asymptotic tail. The structure factor is as
fundamental a property of amolecule as, e.g., its static dipole polar-
izability; in fact, the two characteristics play similar roles in eval-
uating the tunneling ionization rate and second-order Stark shift,
respectively. Since the field factor is known analytically, the calcu-
lation of the ionization rate within the WFAT reduces to calculat-
ing the structure factor. The techniques for calculating molecular
structure factors based on the different quantum chemistry codes
were developed in Refs. [11–13]. In this work, we present the re-
sults of systematic calculations of structure factors for 40 homonu-
clear and heteronuclear diatomic molecules by the Hartree–Fock
(HF) method using the program X2DHF [14]. With these results
at hands, the ionization rates of the molecules can be readily
evaluated.

Let us emphasize that the structure factors presented below en-
able one to obtain only the leading-order term in the asymptotic
expansion of the ionization rate in F evaluated in the SAE and FN
approximations. This basic approximation of the WFAT [6] is now
a well established theory, and this paper presents an extensive set
of results within this theory. At the same time, it should be noted
that a number of generalizations of the WFAT is already available.
Thus the first-order correction terms in the asymptotic expansion
of the rate in F were derived in Refs. [15,16]; the incorporation of
the effects of nuclear motion within the WFAT was discussed in
Refs. [17,18]; a generalization of the WFAT to many-electron sys-
tems was developed in Refs. [19,20]. The evaluation of the rate
within these generalizations requiresmuchmore involved calcula-
tions beyond the basic WFAT employed in this work. Atomic units
are used throughout the paper.

2. Theory

In this section, we summarize formulas needed to implement
the basic WFAT [6] for linear molecules, which includes diatomic
molecules as a particular case. We introduce laboratory and
molecular coordinate frames. Let r = (x, y, z) and r′ = (x′, y′, z ′)
denote the Cartesian coordinates of the active electron in these
frames, respectively, and R̂ denote an Euler rotation [21] from the
laboratory to themolecular frame, r′ = R̂r. By our convention, the z
axis is directed along the electric field, thus the field is F = Fez , F >
0; the z ′ axis coincides with the internuclear axis and lies in the xz
plane; the y and y′ axes coincide. Then the different orientations
of the molecule with respect to the field are described by a single
angle β , 0 6 β 6 π , defining the rotation R̂ from z to z ′ about the
y = y′ axis. Explicitly, the relations between the coordinates read

x′
= x cosβ − y sinβ, (1a)

y′
= y, (1b)

z ′
= x sinβ + z cosβ. (1c)

Let E < 0 andψ(r′) be the energy and wave function of the unper-
turbed field-free HOMO in the molecular frame. The structure of
ψ(r′) assumedmust be explained. Theunperturbed orbitalsψM(r′)
of linear molecules can be generally characterized by the projec-
tionM = 0,±1,±2, . . . of the electronic angularmomentumonto
the internuclear axis. We have ψM(r′) ∝ eiMϕ

′

, where ϕ′ is the az-
imuthal angle in the molecular frame. The orbital energy does not
depend on the sign of M , therefore states with M ≠ 0 are dou-
bly degenerate. This degeneracy is removed by an arbitrarily weak
field, provided that the molecule is not aligned along the field. The
correct zeroth-order orbitals (in the sense of perturbation theory
for degenerate states [7]) in our geometry are given by

ψ
(+)
|M|
(r′) =

1
√
2


ψM(r′)+ ψ−M(r′)


, (2a)
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