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The dosimetry community has a history of using spectral indices to support neutron spectrum
characterization and cross section validation efforts. An important aspect to this type of analysis is
the proper consideration of the contribution of the spectrum uncertainty to the total uncertainty in
calculated spectral indices (SIs). This paper identifies deficiencies in the traditional treatment of the
SI uncertainty, provides simple bounds to the spectral component in the SI uncertainty estimates,
verifies that these estimates are reflected in actual applications, details a methodology that rigorously
captures the spectral contribution to the uncertainty in the SI, and provides quantified examples that
demonstrate the importance of the proper treatment the spectral contribution to the uncertainty in
the SI.

I. INTRODUCTION

In reactor neutron reference benchmark fields,
spectrum-averaged cross sections for reactions of interest
to the dosimetry community are often given in the form of
a spectral index (SI), that is, as a ratio of the spectrum-
averaged cross section for the given reaction to that for
a “reference” reaction. This quantity is often used be-
cause it removes the sensitivity of the metric to the reac-
tor power and to any dependence on an absolute fluence
diagnostic. This provides an experimental metric that is
sensitive to the spectral shape and has a low measurement
uncertainty. The calculated-to-experimental (C/E) dou-
ble SI ratio is often the quantity used to validate either
a neutron spectrum or a cross section determination. In
calculating the uncertainty in this double ratio, the uncer-
tainty in the calculated spectral index typically neglects
consideration of the uncertainty due to the knowledge of
the neutron spectrum. Arguments can be made that this
spectral uncertainty cancels out when the sensitivity of
the test cross section is similar to that for the “reference”
reaction. However, this condition of similar sensitivity
can be very dependent upon the spectral shape. The def-
inition of a spectral definition in Ref. [1] states that “it is
applicable among detector pairs with distinguishable en-
ergy response ranges”, and this is clearly in conflict with
the spectral similarity condition and supports the obser-
vation that this similarity is violated in the majority of
cases where SIs are reported for reactor-based reference
neutron fields.

This paper examines the importance of the spectrum
uncertainty in reporting uncertainties in the C/E ratios of

∗ Corresponding author: pjgriff@sandia.gov

SIs for reactions of interest to the dosimetry community.
When proper a priori uncertainty information is available
for the reference neutron field, this paper shows how to
rigorously treat the uncertainty propagation in this SI
C/E double ratio.

II. SECTRAL INDICES

A. Definitions

The community uses an integral detector response, typ-
ically the measured activity for a reaction with a well-
characterized cross section, in support of the validation
of dosimetry cross sections and to adjust calculated reac-
tor spectra. The metric used is a specific activity, i.e. the
activity per unit mass of a sample. In order to extract
a metric that depends primarily upon the neutron spec-
trum but not the irradiation time or the strength of the
source, i.e. the magnitudes of the neutron fluence, exper-
imenters often report a spectrum-averaged cross section
normalized to a unit fluence.

The spectrum-averaged cross section (xsec.) is one im-
portant metric that the dosimetry community uses to ex-
amine the consistency of measured reaction activities in
the energy-dependent spectrum in the benchmark neu-
tron fields. The energy-dependence of the neutron spec-
trum means that there is also an energy-dependence to
its uncertainty (unc.) and there may be a correlation in
the uncertainty between energy regions. There is typi-
cally a larger uncertainty in the low energy portion of
the spectrum than in the fast, high energy, portion. This
means that it is not always easy to accurately quantify
the total neutron fluence in a given sample irradiation.
In addition, the strength of the neutron source, for both
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accelerator and reactor-produced neutron sources, can be
hard to exactly duplicate between different irradiations or
to accurately and succinctly document in a manner that
promotes replication of the irradiation conditions. Thus,
rather than a spectrum-averaged cross section, the re-
ported dosimetry metric is more often the ratio between
the spectrum-averaged cross section for a reaction of in-
terest and a well-known ”reference” reaction. This quan-
tity is called a spectral index, SI, and is defined as

SIα,β =< σα > / < σβ > . (1)

While experimental measurements are often reported
as spectral indices, it is the calculated-to-experimental
(C/E) ratio of the SI that is the relevant metric for the
validation of either cross sections or spectral representa-
tions. These are given as

Cα,β = [SIα,β ]calc/[SIα,β ]expt. (2)

The community routinely reports spectral indices and
their associated C/E ratios but it is important that an
uncertainty also be reported. The measured uncertainty
of the SI is straight forward since it is the simple ra-
tio of the measured activities. Typically the activites in
the SI ratio are not correlated and the relative uncer-
tainty can be expressed as the root-mean-square (rms)
of the relative uncertainty squared for the activities in
the numerator and denominator of the SI. However, when
one looks at the Cα,β ratios, the uncertainty contribution
from the calculated spectral index must also be consid-
ered. The uncertainty in the calculated spectral index
involves the uncertainty due to the underlying neutron
spectrum and that due to the cross section for the two
reactions. The cross sections for the reactions in the nu-
merator and denominator can generally be considered to
be independent and uncorrelated, and hence the uncer-
tainty contributions are added in quadrature. The spec-
trum appears in both the numerator and denominator
of the SI so the treatment of the spectrum uncertainty
contribution is much more difficult. As an upper bound
for the uncertainty the separate spectrum contributions
to the numerator and denominator could be added, cor-
responding to a negatively correlated uncertainty. This
worst-case relative uncertainty is given as

ΔSIworst =
√
Δσ2

α +Δσ2
β +ΔΦnum +ΔΦden. (3)

Note, this worst case treatment is not an addition of all
terms in quadrature since the contributions are not nec-
essarily uncorrelated, but is a sum of contributions in
the same manner that a systematic anti-correlated uncer-
tainty is treated, i.e. if the spectrum-averaged cross sec-
tion in the numerator increases, the spectrum-averaged
cross section in the denominator would decrease, magni-
fying the change in the calculated SI ratio. The best-case
treatment is to consider the spectral uncertainties in the
numerator and denominator to be positively correlated
and largely cancel out. The rationale for neglecting the

spectrum contribution to the uncertainty in the spectral
index is based on an approximation that the spectrum
uncertainty contribution from the numerator and denom-
inator are correlated and cancel out in the SI ratio. In-
tuition supports this assumption of a cancelation of the
uncertainty in the ratio in so far as the energy-dependent
spectral sensitivity for the reaction in the numerator and
denominator are the same. The rigorous way to treat
the uncertainty in the SI is to use the covariance for the
spectrum and to do an accurate nonlinear error propa-
gation for this spectral index. The purpose of this paper
is to examine the importance of a rigorous treatment of
the uncertainty propragation for SIs measured in various
neutron fields and using various dosimetry reactions.

B. Uncertainty Propagation in a Non-linear
Expression

The straight forward way to accurately treat the con-
tribution of the spectrum uncertainty in the SI is to use
an explicit Monte Carlo approach. Here the variation in
the spectrum is sampled by using the spectrum covari-
ance matrix to draw a correlated sample that represents
the spectrum variation. The covariance of a spectrum
must obey two mathematical constraints. First, the co-
variance matrix must be positive semi-definite, i.e. it
must have no negative eigenvalues. Second, since the
energy-integrated spectrum is normalized to the fluence,
each row of the covariance matrix must sum to zero, i.e.
a positive perturbation in one portion of the spectrum
must be offset by a negative perturbation in a different
portion of the spectrum. Since the covariance matrix, C,
is a square matrix with N linearly independent columns,
it can be factored as

C = QΛQT , (4)

where Q is the square (NxN) matrix whose ith column
is the eigenvector, ηi, of the covariance matrix C and Λ
is the diagonal matrix whose diagonal elements are the
corresponding eigenvalues, i.e., Λii = λii.

Since the covariance matrix is an NxN real symmet-
ric matrix, the eigenvectors can be chosen such that they
are real and orthogonal. Thus the inverse of Q can be re-
placed with the transposed matrix. Since the covariance
matrix is Hermitian, i.e. it is self-adjoint or equal to its
own conjugate transpose, and it is a positive-definite ma-
trix, it has a Cholesky decomposition, that is, it can be
factorized into the product of a lower triangular matrix
and its conjugate transpose,

C = LL∗, (5)

where L is a lower triangular matrix with real and posi-
tive diagonal entries, and L∗ denotes the conjugate trans-
pose of L. These two decompositions can be related as
follows:

C = QΛ1/2Λ1/2∗Q∗ = QΛ1/2(QΛ1/2)∗. (6)
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