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Presently, several methods are used to estimate the covariance matrix of evaluated nuclear cross
sections. Because the resulting covariance matrices can be different according to the method used
and according to the assumptions of the method, we propose a general and objective approach
to quantify the quality of the covariance estimation for evaluated cross sections. The first step
consists in defining an objective criterion. The second step is computation of the criterion. In this
paper the Kullback-Leibler distance is proposed for the quality quantification of a covariance matrix
estimation and its inverse. It is based on the distance to the true covariance matrix. A method
based on the bootstrap is presented for the estimation of this criterion, which can be applied with
most methods for covariance matrix estimation and without the knowledge of the true covariance
matrix. The full approach is illustrated on the 85Rb nucleus evaluations and the results are then
used for a discussion on scoring and Monte Carlo approaches for covariance matrix estimation of
the cross section evaluations.

I. INTRODUCTION

An important component of nuclear cross section eval-
uations is the associated covariance matrix. Several
methods (Bayesian [1], unified Monte Carlo (UMC) [2],
backward-forward Monte Carlo (BFMC) [3], total Monte
Carlo [4] and scoring [5] are some of them) have been
proposed to estimate such matrices, producing many co-
variance matrix estimates (stored in databases such as
ENDF/B-VII.1 [6] or TENDL [7]). For all these meth-
ods, the convergence rate of the estimated covariance is
at least proportional to 1/

√
n (with n the sample size).

However this convergence rate concerns each term of the
covariance matrix and as a consequence, the convergence
rate of the matrix estimation is slower. Thus, the the-
ory does not allow discrimination of these different ap-
proaches. Moreover, for a given nucleus, according to the
method and according to the assumptions, the covariance
estimates can be different.

Therefore, a method to compare, in a quantitative way,
the performance of different techniques in covariance es-
timation quality is important. For this purpose, a general
and objective approach to quantify the quality of the co-
variance estimation of the evaluations is proposed. In this
paper two versions of the Kullback-Leibler distance ([8],
[9], [10]), based on the ratio between two Gaussian proba-
bility density functions with same mean, are proposed as
distances between covariance matrices. Ideally, the qual-
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ity of the covariance estimation would require compu-
tation of the Kullback-Leibler distance between the true
covariance matrix and its estimation. Obviously, the true
covariance matrix is unknown. To overcome this obsta-
cle, this paper proposes a method based on the bootstrap,
which is widely used resampling technique introduced by
Efron [11] allowing for computation of statistics (the vari-
ance for example) of an estimator, whose convergence has
been prooved in many settings ([12] and [13]). Thus, the
Kullback-Leibler distance in combination with bootstrap
allows the comparison of different covariance estimation
method independently of the method used to obtain them
and without any additional code runs.

In the next Section, the two versions of the Kullback-
Leibler distance are defined. The bootstrap is described
in Sect. III. The approach is illustrated on the 85Rb nu-
cleus evaluations and the obtained results are exploited
for a discussion on the scoring and brute Monte Carlo
methods in Sect. IV.

II. DISTANCE BETWEEN COVARIANCE
MATRICES

In our context, the problem is to compare the true co-

variance matrix Σ, with its estimate Σ̂. The best choice
of distance measure will depend on intended use of es-
timated covariance matrix. In order to be as general as
possible, this paper focuses on a metric in the covariance

matrix space. Because the estimation Σ̂ can be used in
a generalized χ2 distance, comparison of the true inverse
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covariance matrix Σ−1, with its estimate Σ̂−1 can also
be important. The norm of the difference between the
covariance matrix and its estimate could be used. One
of the most famous matrix norms is the Frobenius norm.
However, if the matrix coefficients are small, the norm of
the difference can be small even if the matrices are very
different. In order to avoid this problem, it is preferable
to take a relative difference instead. However, the relative
differencies can require other estimated quantities, such
as the mean whose uncertainty can impact on the norm
estimation. Therefore, another distance is proposed in
this section: the Kullback-Leibler distance (also called
the relative entropy) dKL. It is defined on the basis of
the distance between two probability density functions.
More precisely,

dKL(f, g) = IEf

(
log

(
f

g

))
, (1)

where g and f are the two probability density functions
to compare. This distance is not symmetric. Indeed,

in most cases, dKL(f, g) �= dKL(g, f) = IEg

(
log

(
g
f

))
.

Thus, in order to avoid confusion, the following versions

dKL1(f, g) = dKL(f, g) = IEf

(
log

(
f

g

))
, (2)

dKL2(g, f) = dKL(g, f) = IEg

(
log

(
g

f

))
(3)

are used to clearly distinguish the two symmetric versions
depending on the order of comparison. In the case of two

Gaussian probability density functions f = N (μ, Σ̂) and
g = N (μ,Σ) with same mean μ, the previous formulas
(Eqs. (2) and (3)) can be written as

dKL1(Σ̂,Σ) = tr(Σ̂Σ−1)− log(det(Σ̂Σ−1))−N, (4)

dKL2(Σ, Σ̂) = tr(Σ̂−1Σ)− log(det(Σ̂−1Σ))−N. (5)

Thus, when Σ̂ is an estimation of Σ, the first version
dKL1 is well adapted for covariance estimation assess-
ment and the second version dKL2 is well adapted for
assessment of its inverse. These two distances are posi-

tive, and when Σ̂ = Σ they are equal to zero. Obviously,
the Kullback-Leibler distance can also be used to quan-
tify the distance of some other covariance matrices (for

example two estimations Σ̂1 and Σ̂2).

III. BOOTSTRAP ESTIMATION OF THE
DISTANCE

As previously mentioned, the true covariance matrix Σ

is unknown and therefore the computation of dKL1(Σ̂,Σ)

and dKL2(Σ, Σ̂) is not possible. Assuming that each
evaluation is the realization of a N -dimensional centered
Gaussian vector with covariance matrix Σ, it is known

that the matrix nΣ̂ follows a Wishart law with mean Σ.
The variance of Σ̂ can then be deduced from the the vari-
ance of the Wishart law. However, the Gaussian assump-
tion is quite restrictive. The method proposed in this
paper is based on a bootstrap approach and a plug-in esti-
mator [11]. Indeed, this approach allows to overcome the
fact that the true covariance matrix is unknown without
assumptions on the distribution of the evaluations. In our
study, n evaluations (f eval

1 , . . . , f eval
n ) of the cross section,

considered as n random vectors (X1, . . . , Xn) following an
unknown law of probability, F , are observed. The quan-
tity of interest is a functional T of this law and, in our
case, corresponds to the covariance matrix T (F ) = Σ.
From this observed sample, the law F can be approxi-
mated by F̂ and then the functional T (F ) = Σ can be

approximated by T (F̂ ) = Σ̂, called the plugin estima-

tor because the law F has been plugged in by F̂ . The
bootstrap strategy consists in creating a new n-sample
(X∗

1 , . . . , X
∗
n), called a bootstrap sample, according to the

F̂ law. From this bootstrap sample it is possible to com-

pute an estimate Σ̂∗ of Σ̂ in the same way as Σ̂ from
(X1, . . . , Xn). In repeating this resampling B times, B
bootstrap matrices are obtained and it is then possible to

compute statistics on Σ̂, such as its mean, variance, bias
and so on. In our case, the statistics of interest are the
two versions of the Kullback-Leibler distance (Eqs. (4)
and (5)). They are estimated, respectively, by

̂dKL1(Σ̂,Σ) =
1

B

B∑
b=1

dKL1(Σ̂
∗b, Σ̂) (6)

and

̂dKL2(Σ, Σ̂) =
1

B

B∑
b=1

dKL2(Σ̂, Σ̂
∗b). (7)

This strategy is justified by a general result from Bickel
and Freedman [12]. Indeed they have shown that if√
n(T (F̂ ) − T (F )) converges in law to a law P then√
n(T (F̂ ∗)−T (F̂ )) converges in law to the same law. And

in the particular case of the covariance matrix, Beran and
Strivastava [13] have shown that, if F̂ is the empirical cu-

mulative distribution function, then
√
n(Σ̂−Σ) converges

in law to a centered Gaussian law and
√
n(Σ̂∗ − Σ̂) con-

verges in law to the same law.

IV. APPLICATION

In order to ensure the bootstrap allows a numerical
comparison of the covariance estimation obtained with
different methods, two methods have been used: the scor-
ing and the brute Monte Carlo; and, concerning the com-
parison of the different assumptions, three assumptions
have been used for the scoring approach.
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