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We present an improved update scheme for the Linearized Bayesian Update procedure (LBUP).
The revised procedure extends the application of the LBUP to a large number of observables. The
consistent update of dozens of millions of observables becomes manageable by circumventing the
costly calculation of the prior covariance matrix. Nuclear data evaluations based on the revised
scheme may exhaustively enclose all differential and angle-integrated channels, treating all correla-
tions between them exactly in the update procedure.

I. INTRODUCTION

Modern nuclear data evaluation requires the consider-
ation of an extended energy range (incident energies up
to at least 150 MeV) and the provision of uncertainties.
Hence, such evaluations must rely on both experimental
data and results of model calculations to make predic-
tions for physical observables, e.g. cross sections, and to
assess their uncertainties. The latter are usually given in
terms of covariance matrices of cross section uncertain-
ties. The result of such an evaluation process is cast into
an evaluated nuclear data file using the ENDF-format [1].
In a processed form this ENDF-file is an indispensable
requisite for applications that require neutron transport
and/or activation calculations. The reliability of these
calculations is strongly dependent on the quality of the
nuclear data files used.

The selection and uncertainty assessment of experi-
mental data as well as the choice of nuclear models repre-
sent the first step of any evaluation. The latter together
with mathematical constraints describe an apriori knowl-
edge which should be combined with the experimental
data to reflect our best knowledge of the observables. The
evaluation process is straightforward if sufficient experi-
mental data are available in the whole energy range of
the evaluation [2, 3]. In this case, the apriori knowledge
plays a minor role. However, at energies above 20 MeV
experimental data are scarce, and consequently current
nuclear data evaluations up to 200 MeV rely on nuclear
models and thus on apriori knowledge. At present there
is an ongoing discussion about the most appropriate eval-
uation procedure. Several methods for nuclear data eval-
uation were proposed by different groups, e.g. [4–11].
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Among these, the methods based on Bayesian statistics,
e.g. [5, 6, 9–11], are most appealing and have been suc-
cessfully applied for nuclear data evaluation in the past.

Bayesian statistics is mathematically well founded and
its application can be regarded as automated logical rea-
soning based on incomplete or vague information [12]. It
provides a consistent and well-defined procedure to com-
bine experimental data and apriori knowledge. Hence it
is widely accepted to provide a well suited framework for
nuclear data evaluation.

With increasing incident energy the number of energet-
ically open channels is increasing, and consequently the
number of observables included in the evaluation process
gets significantly larger. In principle, an extended en-
ergy range will not lead to difficulties as long as the eval-
uation is limited to the nuclear model space, i.e. the
search for the set of best model parameters which pro-
vide a fair description of the experimental data. In this
case, the number of model parameters to be estimated
will be the same or only moderately growing with in-
creased incident energy. However, in actual evaluations
within the Linearized Bayesian Update Procedure [11],
one is interested in flexibilities beyond the strict model
space. Hence, one performs the evaluation relying on
a surrogate model where the observables at given mesh
points serve as parameters of the model. Thus, one is
faced with a large number of parameters which must be
handled in an evaluation process.

In this contribution we consider the Linearized
Bayesian Update Procedure (see e.g. [11]) which assumes
Gaussian distributions for both the prior distribution of
the observables, i.e. cross sections, and the likelihood
function of the experimental data. We develop a new
numerically efficient update procedure of the mean val-
ues of the observables without explicitly calculating the
prior covariance matrix. The novel procedure allows an
exact treatment of a huge number of observables within
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the Linearized Bayesian Update Procedure. Thus, we
can implicitly deal with prior covariance matrices of di-
mension 107 × 107 or higher on a modern personal com-
puter. The millions of quantities a nuclear model code
may produce, i.e. angle-integrated cross sections, angle-
differential cross sections and spectra, can be consistently
updated in one step.

After this introduction, we briefly recall the basics of
Bayesian statistics in Sect. II, in order to provide the
most important relationships. In Sect. III we reformulate
the Linearized Bayesian Update Procedure to make its
application feasible for a large number of observables. A
summary and outlook is given in Sect. IV.

II. STATISTICAL BASIS

The cornerstone of Bayesian statistics is Bayes theorem

P (x|y) ∝ P (y|x)P (x) (1)

with the vector of model parameters x and the experi-
mental data y. The posterior probability density function
(pdf) P (x|y) gives the probability density of a parameter
set x under the condition that the given data y have been
measured. The posterior pdf is – apart from a normal-
ization constant – the product of the likelihood P (y|x)
and the prior pdf P (x). Similarly, the likelihood gives
the probability density that a certain set of experimental
data is obtained under the condition that the set of model
parameters x is true. The prior pdf gives the apriori prob-
ability density for a certain set of model parameters x if
no data are measured.

In the Linearized Bayesian Update Procedure (LBUP)
Gaussian probability distributions are assumed for both
the prior pdf and the likelihood. Thus, the prior pdf takes
the form

P (x) ∝ exp

(
−1

2
(x− x)TA−1(x− x

)
, (2)

where x is the apriori expectation vector for the observ-
ables and A the associated covariance matrix. The prior
expectation vector x may contain angle-integrated cross
sections, angle-differential cross sections and spectra. As
briefly outlined in the introduction (section I), we use a
surrogate model and for the benefit of flexibility we do not
work on the level of nuclear models. Thus, the “model
parameters” are the physical observables, and not opti-
cal model or level density model parameters. However,
from the statistical point of view, other observables than
the aforementioned could also be included as long as they
are continuous quantities. This prior pdf gives the prob-
ability density that a certain vector x represents the true
values of the observables under the assumption of a valid
model. The normalization constant of the Gaussian dis-
tribution is not relevant for further discussion.

The prior expectation vector x and the prior covariance
matrix A are constructed from the results of model cal-
culations where model parameters have been sampled ac-
cording to a given distribution. The choice of the bound-
aries for the model parameters and from which distri-
bution they are sampled depends on the specific nuclear
model as well as the nuclear system considered. The fur-
ther considerations are independent of the specific choice.

Let’s assume that the model calculations are already
available and the resulting observables of the ith model
calculation are collected in a column vector xi. Using
these sample vectors xi, the prior expectation x and co-
variance matrix A can be calculated by

x =
1

n

n∑
i=1

xi , (3)

A =
1

n− 1

n∑
i=1

(xi − x)(xi − x)T . (4)

For the likelihood containing the experimental informa-
tion, we also assume a Gaussian density distribution,

P (y|x) ∝ exp

(
−1

2
(y − Sx)TB−1(y − Sx)

)
. (5)

It expresses the probability density of the measured data
vector y if x contains the true values of the observables.
Here, B is the covariance matrix for the uncertainties
of the experiments. Because the observables within the
vector x are given on predefined energy and angle grids,
the information in x has to be transferred to the energies
and angles of the experimental data. This transfer is ac-
complished by the sensitivity matrix S which can exactly
account for all kinds of linear mapping schemes, such as
linear interpolation, spline interpolation or Fourier series.
We used linear interpolations for angle-integrated and bi-
linear interpolation for differential data. Reasons for this
choice are given in the next section.

The posterior pdf, i.e. the new state of knowledge, is
apart from a normalization constant the product of prior
pdf and likelihood, see Eqs. (2) and (5). Because both
prior pdf and likelihood are Gaussian, the posterior pdf
is also a Gaussian distribution function and the following
standard matrix formulas (e.g. [13, 14]) can be used to
calculate its mean vector x′ and covariance matrix A′,

x′ = x+AST (SAST +B)−1(y − Sx) , (6)

A′ = A−AST (SAST +B)−1SA . (7)

These update formulas are convenient for numerical cal-
culations because the required inversion is performed on
the experimental grid, which is usually of much lower di-
mension than the model grid. Mathematically equivalent
alternative update formulas exist which involve an inver-
sion on the model grid.

If for consistency, all angular differential, spectral and
angle-integrated data are included in the model vector x,
the associated prior covariance matrix A could become
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