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Abstract

We review the long term project of the ALPHA collaboration to compute in QCD the running coupling constant
and quark masses at high energy scales in terms of low energy hadronic quantities. The adapted techniques required
to numerically carry out the required multiscale non-perturbative calculation with our special emphasis on the control
of systematic errors are summarized. The complete results in the two dynamical flavor approximation are reviewed
and an outlook is given on the ongoing three flavor extension of the programme with improved target precision.
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1. Introduction

Quantum Chromo Dynamics (QCD) is the renormal-
izable quantum field theory containing gluon and quark
fields that interact in a unique way dictated by SU(3)
gauge invariance. It may be seen as arising from the
standard model of elementary particles in a limit where
all other fields, including their interactions with quarks
and gluons, are stripped away. Strong interactions and
confinement are the characteristics of this sector which
hence calls for non-perturbative evaluations and is in the
focus of lattice formulations and simulations.

We here consider QCD with a free number of Nf color
triplets (flavors) of quark species. In Nature we see the
case Nf = 6 with the flavors up, down, strange, charm,
bottom and top in order of ascending mass. The species
beyond light up and down quarks come with charac-
teristic scales of the order of 0.1 GeV, 1 GeV, 4 GeV,
175 GeV. Therefore it makes sense to consider effec-
tive theories with Nf < 6 to describe physics with char-
acteristic energies significantly below the scales of the
dropped degrees of freedom. They then enter only in-
directly into the determination of the free parameters of
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the effective theory. In lattice simulations the modelling
of the precise flavor content is technically very demand-
ing. Therefore a lot of studies are found and will also
be discussed here that refer to Nf = 2 and Nf = 3 where
the latter number is the minimum to allow for real ap-
plications as an effective theory [1, 2, 3, 4, 5]. In any
case generalized QCD has Nf + 1 free parameters given
by one quark mass per species and in addition the gauge
coupling.

The two light species are in most studies, including
those described here, approximated to be degenerate.
The value zero for some or even all Nf quark masses
is theoretically nice as it enhances the chiral symme-
try of the model and is thus stabilized under renormal-
ization. The renormalization of the coupling can be
defined in this massless limit and we then speak of a
massless renormalization scheme. Such schemes are
technically convenient in nontrivial perturbative as well
as non-perturbative calculations. The renormalization
of the coupling can be left unchanged as quark masses
are ‘turned on later’. To define a renormalized coupling
constant in a massless scheme an additional scale μ en-
ters via the renormalization conditions. The resulting
scale dependent ‘running’ coupling ḡ(μ) obeys a Callan-
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Symanzik equation

μ
d

dμ
ḡ(μ) = β(ḡ(μ)), (1)

in which the function β is determined by the theory once
a particular coupling definition has been adopted. A
negative β-function corresponds to asymptotic freedom.
The free integration constant that arises in solving this
differential equation can be taken as the free parameter
that the bare coupling has been ‘traded for’ in the pro-
cess of renormalization. It may be fixed by specifying
ḡ for a specific μ value in GeV. Alternatively one may
convert the Callan-Symanzik equation into the equiva-
lent integral statement that

Λ = μ
(
b0ḡ2(μ)

)−b1/2b2
0 exp[−1/(2b0ḡ2(μ))] (2)

× exp
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is independent of μ. In this equation b0, b1 are the lead-
ing and scheme independent coefficients in the asymp-
totic expansion

β(x) = −
∑
n≥0

bnx2n+3, (3)

b0 =
1

(4π)2

(
11 − 2

3
Nf

)
, (4)

b1 =
1

(4π)4

(
102 − 38

3
Nf

)
. (5)

For asymptotically large μ it is sufficient to evaluate (2)
with the perturbative series for β truncated beyond some
n ≥ 1. Therefore, in a perturbative context, Λ is associ-
ated with the behavior of ḡ(μ) for μ→ ∞.

2. Hadronic renormalization scheme and finite size

scaling

In lattice simulations also non-perturbative quantities
associated with scales of order one GeV and below can
be computed in principle. Examples are the masses of
light hadrons and matrix elements involving their one-
particle states, decay constants like fπ, fK for example
[6, 7]. This opens up the possibility to also match such
quantities directly to experiment and in this way deter-
mine the free parameters of QCD which can then be de-
termined with an in principle arbitrary precision1. This

1This refers to pure QCD. Other interactions are still neglected.

is not true if perturbation theory at any finite energy is
involved, since with an asymptotic expansion – even
if very high orders were available – an uncertainty re-
mains. This effect is expected to be small at the Z-mass,
but the situation is much more delicate for example for
determinations of αs in the τ-mass region.

As a conceptually simple example of a hadronic
scheme one could imagine to use as input parameters
the mass of the proton and in addition the masses of
Nf types of stable mesons that are sensitive to the re-
spective quark masses. In practice one of course has
Nf + 1 dimensionless parameters at ones disposal in the
lattice theory of which Nf may be determined by di-
aling the correct ratios of meson to proton mass. The
remaining degree of freedom allows to tune the lattice
theory to its critical point where the continuum limit is
reached. Due to asymptotic freedom in QCD this is ac-
complished by sending the bare coupling to zero. In this
limit, all dimensionfull quantities emerge in the form of
well-defined multiples of appropriate powers of the pro-
ton mass which we thus employ to set the scale for all
observables. Equivalently we may say that all that is
computed from theories including the lattice and com-
pared with experiment are dimensionless ratios of ob-
servables. The above scheme selects a minimal set of
independent mass ratios and, with these tuned, all other
ratios must ‘fall in place’. We try to be very explicit
on this seemingly trivial issue, as sometimes confusion
seems to arise here nevertheless.

In the previous paragraphs we have described a rather
idealized situation. For various technical reasons we
will not use this precise hadronic scheme, and in ad-
dition several sources of in practice unavoidable sys-
tematic errors have to be taken into account in lattice
computations.

A lattice that is simulated on a computer necessarily
has a finite number of sites and thus finitely many de-
grees of freedom. This implies a finite extent L and a
finite spacing or resolution a such that one has (L/a)4

sites. In large present day simulations L/a ∼ 100 is
achieved. If we refer to mhad as some hadronic mass
scale, then amhad > 0 represents a distortion of the
physics by an unphysical UV cutoff effect. Details de-
pend on the chosen lattice discretization, but in prac-
tice and employing Symanzik’s theory of cutoff effects
[8, 9, 10], we expect these effects to diminish asymp-
totically at a rate proportional to (amhad)2. We need
to verify that we have reached this asymptotic behav-
ior to estimate the prefactor by multiple simulations in
which the resolution (and nothing else) is varied. This
whole procedure is called continuum extrapolation and,
of course, leaves behind a contribution in the final error
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