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Abstract

After a general introduction about the calculation of one-loop scattering amplitudes via integrand-level techniques,
which led to the construction of efficient and automated computational tools for NLO predictions, we briefly describe
an approach to the reduction of scattering amplitudes based on integrand-level reduction via multivariate polynomial
division also applicable beyond one-loop amplitudes. We also review the main features of the GoSam 2.0 automated
framework for NLO calculations and show some of its application to Standard Model processes involving the pro-
duction massive particles, such as the Higgs boson or top-quark pairs, obtained embedding of the virtual amplitudes
produced by GoSam within existing Monte Carlo tools.
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1. Introduction

The evaluation of scattering amplitudes allows us to
test the phenomenological prediction of particle theory
with the measurement at collider experiments. By a
more abstract point of view, scattering amplitudes can
be studied in terms of their symmetries and analytic
properties. The understanding of their mathematical
structure naturally provides the theoretical framework
to develop new techniques for their evaluation, and ul-
timately to design more efficient computational algo-
rithms for the production of physical cross sections and
differential distributions.

Theory predictions play a fundamental role in the
particle physics experiments at current hadron collid-
ers. The high luminosity accumulated by the exper-
imental collaborations during the Run-I of the Large
Hadron Collider (LHC), allowed for a very detailed in-
vestigation of the Standard Model of particle physics.

∗Speaker and Corresponding Author

In these analyses, for example to study the properties
of the recently discovered Higgs boson [1–4], theoreti-
cal predictions are indispensable both for the signal and
for the modeling of the relevant background processes,
which share similar experimental signatures. Beyond
Higgs studies, precise theory predictions allow one to
constrain model parameters in the event that a signal of
New Physics is detected during the Run-II at the LHC
with improved energy.

In this interplay between theoretical prediction and
experimental data, it is crucial that the level of produc-
tivity of the theory matches the precision of the mea-
surements. Since leading-order (LO) results are affected
by large uncertainties, theory predictions are not reliable
without accounting for higher orders. Therefore, it is of
primary interest to provide theoretical tools which are
able to perform the comparison of LHC data to theory
at next-to-leading-order (NLO) accuracy.

One of the scopes of this talk is to summarize the re-
cent progress in the evaluation of scattering amplitudes
and provide a brief description of integrand-level tech-
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niques, in particular the OPP reduction algorithm, the
d−dimensional decomposition of scattering amplitudes,
and the integrand reduction via multivariate polynomial
division.

We will also review the main features of the GoSam
framework [5, 6] for the automated computation of one-
loop amplitudes and some of the recent results obtained
using it. Since the main purpose of GoSam is the com-
putation of the virtual NLO part, in order to produce
integrated cross sections and differential distributions it
should be interfaced with Monte Carlo (MC) tools. We
will focus on this important point in the last part of the
talk, where we show some examples of applications.

For a wider outlook on the field, we refer the reader
to the plenary presentation of Pierpaolo Mastrolia at this
conference [7]. Detailed reports and comprehensive re-
views on the different topics described here can be also
found in [8–12].

2. Scattering Amplitudes at NLO

The computation of NLO matrix elements requires,
in addition to the tree-level LO result, the evaluation of
one-loop virtual corrections and contributions from real
emission. Both terms are separately infrared (IR) di-
vergent and only their combination leads to a physical
result. Moreover, the virtual part is also ultraviolet (UV)
divergent, and the UV poles are removed by the renor-
malization procedure.

While the LO matrix elements and the NLO real parts
have been available for a long time, until recently the
evaluation of the virtual part of one-loop contributions
represented the bottleneck towards the automation of
NLO computation. The standard method for the com-
putation of NLO virtual corrections relies on the evalu-
ation of all NLO Feynman diagrams associated with the
process. The general task of the calculation is to com-
pute, for each diagram contributing to the amplitude and
for each phase space point, the following integral:

M =
∫

ddq̄ A(q̄) =
∫

ddq̄
N(q̄)

D̄0D̄1 . . . D̄m−1
, (1)

where the q̄ denotes integration momenta in d = 4 −
2ε dimensions following the prescription q̄2 = q2 − μ2

and D̄i = (q̄ + pi)2 − m2
i = (q + pi)2 − μ2 − m2

i , are
accordingly the d−dimensional denominators generated
by the propagators of the particles inside the loop.

It is well known [13, 14] that the evaluation of the
one-loop diagrams can be performed by decomposing
each integralM in terms of a finite set of scalar master
integrals (MIs), plus an additional rational function of

the masses and momenta appearing in the original am-
plitude, known in the literature as rational part R. The
one-loop “master formula” allows to rewrite the integral
in Eq. (1) as

M =

m−1∑
i0<i1<i2<i3

d(i0i1i2i3)
∫

ddq̄
1

D̄i0 D̄i1 D̄i2 D̄i3

+

+

m−1∑
i0<i1<i2

c(i0i1i2)
∫

ddq̄
1

D̄i0 D̄i1 D̄i2

+

+

m−1∑
i0<i1

b(i0i1)
∫

ddq̄
1

D̄i0 D̄i1

+

+

m−1∑
i0

a(i0)
∫

ddq̄
1

D̄i0

+ R . (2)

The calculation of virtual amplitudes can be visualized
in terms of three tasks: i) the generation of the uninte-
grated amplitudes A, namely their numerator functions
N(q) and the list of denominators D̄i; ii) the reduction
of the amplitude to determine all coefficients multiply-
ing each of the MIs in Eq. (2) and the rational term R;
iii) the evaluation of the MIs which, multiplied by the
coefficients obtained in the reduction, provide the final
result for the amplitudes. Since in the one-loop case,
all scalar master integrals are known and available in
public codes [15–19], and amplitudes can be efficiently
generated with algebraic or numerical techniques, peo-
ple mostly focused on the intermediate step, namely the
stable and efficient extraction of all the coefficients.

3. Integrand-Reduction Techniques

During the past decade, a powerful framework for
one-loop calculation was developed by merging the idea
of four-dimensional unitarity-cuts [20, 21], which allow
to explore the (poly)logarithmic structure of the ampli-
tudes, with the understanding of the universal algebraic
form of any one-loop scattering amplitudes, contained
in the OPP method [22–25].

The reduction at the integrand level is based on the
decomposition of the numerator function of the ampli-
tude in terms of the propagators that depend on the inte-
gration momentum, in order to identify before integra-
tion the structures that will generate the scalar integrals
and their coefficients and those that will vanish upon
integration of the loop momentum. In this approach,
the coefficients in front of the MIs can be determined
by solving a system of algebraic equations that are ob-
tained by: i) the numerical evaluation of the numerator
of the integrand at explicit values of the loop-variable;
ii) and the knowledge of the most general polynomial
structure of the integrand itself.
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