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Abstract

We study the possible effects of large Lorentz violations that can appear in the effective models in which the
Lorentz symmetry breakdown is performed with higher-order operators. For this we consider the Myers and Pospelov
extension of QED with dimension-five operators in the photon sector and standard fermions. We focus on the fermion
self-energy at one-loop order and find small and finite radiative corrections in the even CPT sector. In the odd CPT
sector a lower dimensional operator is generated which contains unsuppressed effects of Lorentz violation leading to
a possible fine-tuning. For the calculation of divergent diagrams we use dimensional regularization and consider an
arbitrary background four-vector.

1. Introduction

New physics standing in the form of Lorentz sym-
metry violation has been a starting point for several ef-
fective models beyond the standard model [1]. A low
energy remnant of this type is strongly motivated by
the idea that spacetime changes drastically due to the
appearance of some level or discreteness or spacetime
foam at high energies. The effective approach has been
shown to be extremely successful in order to contrast
the possible Lorentz and CPT symmetry violations with
experiments. A great part of these searches have been
given within the framework of the standard model ex-
tension with several bounds on Lorentz symmetry viola-
tion provided [2, 3, 4]. In general most of the studies on
Lorentz symmetry violation have been performed with
operators of mass dimension d ≤ 4, [5]. In part because
the higher-order theories present some problems in their
quantization [6]. However, in the last years these oper-
ators have received more attention and several bounds
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have been put forward [7, 8, 9, 10, 11]. Moreover, a gen-
eralization has been constructed to include non-minimal
terms in the effective framework of the standard model
extension [12].

Many years ago Lee-Wick [13] and Cutkosky [14]
studied the unitarity of higher-order theories using the
formalism of indefinite metrics in Hilbert space. They
succeeded to prove that unitarity can be conserved in
some higher-order models by restricting the space of
asymptotic states. This has stimulated the construc-
tion of several higher-order models beyond the standard
model [15]. One example is the Myers and Pospelov
model based on dimension-five operators describing
possible effects of quantum gravity [16, 17]. In the
model the Lorentz symmetry violation is characterized
by a preferred four-vector n [18, 19]. The preferred
four-vector may be thought to come from a sponta-
neous symmetry breaking in an underlying fundamen-
tal theory. One of the original motivations to incorpo-
rate such terms was to produce cubic modifications in
the dispersion relation, although an exact calculation
yields a more complicated structure usually with the
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gramian of the two vectors k and n involved. The Myers
and Pospelov model has become an important arena to
study higher-order effects of Lorentz-invariance viola-
tion [8, 20, 21, 22].

This work aims to contribute to the discussion on
the fine-tuning problem due to Lorentz symmetry viola-
tion [23], in particular when higher-order operators are
present. There are different approaches to the subject,
for example using the ingredient of discreteness [24]
or supersymmetry [25]. For renormalizable operators,
including higher space derivatives, large Lorentz vio-
lations can or cannot appear depending on the model
and regularization scheme [26]. However, higher-
order operators are good candidates to produce strong
Lorentz violations via induced lower dimensional oper-
ators [27]. Some attempts to deal with the fine tuning
problem considers modifications in the tensor contrac-
tion with a given Feynman diagram [16] or just restrict
attention to higher-order corrections [28]. However
in both cases the problem comes back at higher-order
loops [29]. Here we analyze higher-order Lorentz vio-
lation by explicitly computing the radiative corrections
in the Myers and Pospelov extension of QED. We use
dimensional regularization which eventually preserves
unitarity, thus extending some early treatments [18, 20].

2. Lorentz fine-tuning

Consider the Yukawa model [23, 30]

L = 1
2
∂μφ∂

μφ − 1
2
μ2φ2 + ψ̄(i/∂ − m)ψ + gY ψ̄φψ , (1)

where the Lorentz violation was implemented by modi-
fying the propagators. In particular, the fermion propa-
gator changes as
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The above integral has been ultraviolet regularized
and is therefore convergent. We expect to recover the
usual divergencies in the limit Λ → 0 of the first terms

of the expansion around p = 0
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vanish. We have from rotational invariance
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where the Lorentz violation is parametrized by the
quantity
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The dominant term can be obtained by setting m = 0
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