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Abstract

We review the recent progress on the numerical implementation of the Loop-Tree Duality Method (LTDM) for the
calculation of scattering amplitudes. A central point is the analysis of the singularities of the integrand. In the frame-
work of the LTDM some of these singularities cancel out. The ones left over are dealt with by contour deformation.
We present details on how to achieve this as well as first results.

1. Introduction

When calculating NLO (NNLO) cross-sections one
needs to consider the tree- and loop-contributions sepa-
rately. Especially loops with many external legs prove
to be challenging. Considerable progress has already
been made in order to attack this problem: OPP-
Method, Unitarity Methods, Mellin-Barnes Representa-
tion, Sector Decomposition [1]. The advantage of these
methods is that they made possible what was impossible
before, but still a lot of effort has to be put in to cancel
infrared singularities among real and virtual corrections.
Additional difficulties arise from threshold singularities
that lead to numerical instabilities. The Loop-Tree Du-
ality method aims towards a combined treatment of tree-
and loop- contributions. Therefore the Loop-Tree Dual-
ity method casts the virtual corrections in a form that
closely resembles the real ones.

2. Loop-Tree Duality at one loop

The most general, dimensionally regularized one-loop
scalar integral can be written as [2]:

L(1)(p1, p2, . . . , pN) =
∫
�1

N∏
i=1

GF(qi) (1)
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with the Feynman propagator GF(qi) = [q2
i −m2

i + i0]−1,
internal momenta qi = �1 + p1 + · · · + pi = �1 + ki and
shorthand integral notation

∫
�1
= −i

∫
dd�1/(2π)d. As

a first step, one performs the integration over the com-
plex energy components of the loop four-momentum by
applying the residue theorem. The integration contour
is chosen such that it encloses the poles with positive
energy and negative imaginary part, see figure below:
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Figure 1: Location of poles and integration contour CL in the complex
�1,0-plane.

The residue theorem is employed by taking the
residues of the poles inside of the contour and summing
over them. Given an appropriate gauge choice the in-
tegrand in eq. (1) contains only simple poles. Thus
the residue of an individual pole is done by taking the
residue of a single propagator and evaluating the other
propagators at the position of the residue

ResIm{qi,0}<0
1

q2
i − m2

i + i0
=

∫
d�1δ+(q2

i − m2
i ) (2)
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∏
j�i

GF(q j)

∣∣∣∣∣∣∣∣
i-th pole

=
∏
j�i

1
q2

j − m2
j − i0η(q j − qi)

≡
∏
j�i

GD(qi; q j). (3)

The subscript “+” on the right hand side of eq. (2) in-
dicates that the positive-energy solution is to be taken.
Furthermore η is a future-like vector, i.e. η2 ≥ 0, η0 > 0.
It is dependent on the choice of coordinate system, how-
ever it cancels out once one adds all dual contributions.
Hence physical objects like scattering cross sections
will stay frame-indepedent. Evaluating the “non-cut”
propagators at the position of the pole leads to a mod-
ification of the usual Feynman prescription. In eq. (3)
it is shown that instead one ends up with the so called
“dual prescription” which serves to keep track of the
correct sign of the i0-prescription of the corresponding
propagator. Collecting all the pieces and putting them
together, one arrives at

L(1)(p1, p2, . . . , pN) = −
∑∫

�1

δ̃(qi)
N∏

j=1
j�i

GD(qi; q j)

(4)
with δ̃(qi) = 2πiδ+(q2

i − m2
i ). Thus, by virtue of em-

ploying the residue theorem, it is possible to rewrite a
one-loop amplitude as a sum of single-cut phase-space
integrals over the loop-three-momentum. The i-th dual
contribution has the i-th propagator set on-shell while
the left over Feynman propagators get promoted to Dual
propagators.

L(1)(p1, p2, . . . , pN) =

−
N∑
i=1

pi pi+1

pi+2

qi

δ̃(qi)

1
q2i+1 −m2

i+1 − i0 ηpi+1

Figure 2: Graphical representation of the solution of the LTDM at
one-loop.

The LTDM features a couple of interesting proper-
ties:

• Number of single cut Dual Contributions equals
the number of legs, this way a loop diagram is fully
opened to tree diagrams.

• The singularities of the loop diagram appear as sin-
gularities of the Dual Integrals.

• Tensor loop integrals and physical scattering am-
plitudes are treated in the same way since the
Loop-Tree Duality works only on propagators.

• Virtual corrections are recast in a form, that closely
parallels the contribution of real corrections.

This is the formalism for the one-loop case. Solutions
for more complicated situations like multiple loops [3]
or higher order poles [4] are described in the respective
references.

3. Singular behavior of the loop integrand

As a preparatory step it will prove useful to introduce
an alternative way of denoting the dual propagator. This
will give a more natural access to its singularities.

δ̃(qi)GD(qi; q j) = 2πi
δ(qi,0 − q(+)

i,0 )

2q(+)
i,0

1

(q(+)
i,0 + k ji,0)2 − (q(+)

j,0 )2

(5)

with k ji = q j − qi and q(+)
i,0 =

√
qi

2 + m2
i − i0.

In fig. (3), the on-shell hyperboloids of three propaga-
tors in loop-mometum-space are sketched.
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Figure 3: On-shell hyperboloids for three arbitrary propagators in
Cartesian coordinates.

The loop integrand becomes singular at hyperboloids

with q(+)
i,0 =

√
qi

2 + m2
i − i0 (solid lines) and q(−)

i,0 =

−
√

qi
2 + m2

i − i0 (dashed lines) and origin in −ki,μ. Ap-
plying the LTDM is equivalent to integrating along the
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