
Available online at www.sciencedirect.com

ScienceDirect

Nuclear Physics A 928 (2014) 180–189

www.elsevier.com/locate/nuclphysa

Fermi liquid theory:
A brief survey in memory of Gerald E. Brown

Thomas Schäfer

Department of Physics, North Carolina State University, Raleigh, NC 27695, United States

Received 27 March 2014; received in revised form 10 April 2014; accepted 11 April 2014

Available online 18 April 2014

Abstract

I present a brief review of Fermi liquid theory, and discuss recent work on Fermi liquid theory in dilute
neutron matter and cold atomic gases. I argue that recent interest in transport properties of quantum fluids
provides fresh support for Landau’s approach to Fermi liquid theory, which is based on kinetic theory
rather than effective field theory and the renormalization group. I also discuss work on non-Fermi liquids,
in particular dense quark matter.
© 2014 Elsevier B.V. All rights reserved.
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1. Introduction

One of Gerry’s main scientific pursuits was to understand the nuclear few- and many-body
problem in terms of microscopic theories based on the measured two- and three-nucleon forces.
One of the challenges of this program is to understand how the observed single-particle aspects
of finite nuclei, in particular shell structure and the presence of excited levels which carry the
quantum numbers of single particle states, can be reconciled with the strong nucleon–nucleon
force, and how single particle states can coexist with collective modes. A natural framework for
addressing these questions is the Landau theory of Fermi liquids. Landau Fermi liquid theory
describes a, possibly strongly correlated, Fermi system which is adiabatically connected to a free
Fermi gas. In particular, the system has a Fermi surface, and the excitations are quasi-particles
with the quantum numbers of free fermions, but with modified dispersion relations and effective
interactions. These quasi-particles coexist with collective modes, for example zero sound.
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Gerry reviewed Fermi liquid theory in a number of his books and other writings. The con-
ference that celebrated his 60th birthday was titled “Windsurfing the Fermi Sea” [1]. In the
introduction of Unified Theory of Nuclear Models and Forces (3rd edition, 1970) Gerry writes:

Many improvements could have been made, especially in Chapter XIII on effective forces in
nuclei, but time is short, and I shall make them in later editions, when I am too old to ski.
Of course, nobody will be interested in the subject by then.

This prediction turned out to be incorrect. In his final decade at Stony Brook Gerry trained and
mentored a remarkable group of students who have helped to reinvigorate the study of effective
forces in nuclei [2,3].

2. Landau Fermi liquid theory

Consider a cold Fermi system in which the low energy excitations are spin 1/2 quasi-particles.
Landau proposed to define a distribution function fp = f 0

p +δfp for the quasi-particles. Here, f 0
p

is the ground state distribution function, and δfp � f 0
p is a small correction. The energy density

can be written as [4]

E = E0 +
∫

dΓp

δE
δfp

δfp + 1

2

∫ ∫
dΓpdΓp′

δ2E
δfpδfp′

δfpδfp′ + . . . , (1)

with dΓp = d3p/(2π)3. Functional derivatives of E with respect to fp define the quasi-particle
energy Ep and the effective interaction tpp′

Ep = δE
δfp

, tpp′ = δ2E
δfpδfp′

. (2)

Near the Fermi surface we can write Ep = vF (| �p| − pF ), where vF is the Fermi velocity, pF is
the Fermi momentum, and m∗ = pF /vF is the effective mass. We can decompose tpp′ = Fpp′ +
Gpp′ �σ1 · �σ2. On the Fermi surface the effective interaction is only a function of the scattering
angle and we can expand the angular dependence as

Fpp′ =
∑

l

FlPl(cos θ �p· �p′), (3)

where Pl(x) is a Legendre polynomial, and Gpp′ can be expanded in an analogous fashion. The
coefficients Fl and Gl are termed Landau parameters.

The distribution function satisfies a Boltzmann equation

(∂t + �vp · �∇x + �Fp · �∇p)fp(x, t) = C[fp] (4)

where �vp = �∇pEp is the quasi-particle velocity, �Fp = −�∇xEp is an effective force, and C[fp]
is the collision term. Conserved currents can be defined in terms of fp and the single particle
properties Ep and vp . For example, we can write the mass density ρ and mass current �j as

ρ =
∫

dΓp mfp, �j =
∫

dΓp m�vpfp, (5)

where dΓp = d3p/(2π)3. The Boltzmann equation implies that the current is conserved, ∂0ρ +
�∇ · �j = 0. The conditions given in Eq. (2) play an important is proving conservation laws for
energy and momentum, and in establishing sum rules.
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