

Available online at www.sciencedirect.com

Nuclear Physics A 954 (2016) 7-16

www.elsevier.com/locate/nuclphysa

K-series X-ray yield measurement of kaonic hydrogen atoms in a gaseous target

M. Bazzi^a, G. Beer^b, G. Bellotti^{c,d}, C. Berucci^{e,a}, A.M. Bragadireanu^{f,a},
D. Bosnar^g, M. Cargnelli^e, C. Curceanu^a, A.D. Butt^{c,d}, A. d'Uffizi^a,
C. Fiorini^{c,d}, F. Ghio^h, C. Guaraldo^a, R.S. Hayanoⁱ, M. Iliescu^a,
T. Ishiwatari^e, M. Iwasaki^j, P. Levi Sandri^a, J. Marton^e, S. Okada^j,
D. Pietreanu^{f,a}, K. Piscicchia^{a,k}, A. Romero Vidal¹, E. Sbardella^a,
A. Scordo^a, H. Shi^{a,*}, D.L. Sirghi^{a,f}, F. Sirghi^{a,f}, H. Tatsuno^{m,n},
O. Vazquez Doce^o, E. Widmann^e, J. Zmeskal^e

^a INFN, Laboratori Nazionali di Frascati, C.P. 13, Via E. Fermi 40, I-00044 Frascati (Roma), Italy
 ^b Department of Physics and Astronomy, University of Victoria, P.O. Box 3055, Victoria BC V8W3P6, Canada
 ^c Politecnico di Milano, Dipartimento di Elettronica e Informazione, Piazza L. da Vinci 3 2, I-20133 Milano, Italy
 ^d INFN Sezione di Milano, Via Celoria 16, 20133 Milano, Italy
 ^e Stefan-Meyer-Institut für Subatomare Physik, Boltzmanngaße 3, 1090 Wien, Austria
 ^f IFIN-HH, Institutul National pentru Fizica si Inginerie Nucleara Horia Hulubbei, Reactorului 30, Magurele, Romania
 ^g Department of Physics, Faculty of Science, University of Zagreb, Bijenicka 32, HR-10000 Zagreb, Croatia
 ^h INFN Sezione di Roma I and Instituto Superiore di Sanita, I-00161 Roma, Italy
 ⁱ Department of Physics, School of Science, The University of Tokyo, Bunkyo-ku Hongo 7-3-1, Tokyo, Japan

^j RIKEN, Institute of Physical and Chemical Research, 2-1 Hirosawa, Wako, Saitama 251-0198, Japan

^k Museo Storico della Fisca e Centro Studi e Ricerche "Enrico Fermi", Piazza del Viminale 1-00184 Roma, Italy

¹ Universidade de Santiago de Compostela, Casas Reais 8, 15782 Santiago de Compostela, Spain

^m National Institute of Standards and Technology (NIST), Boulder, CO, 80303, USA

ⁿ High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801, Japan

^o Excellence Cluster Universe, Technische Universität München, Boltzmannstraße 2, D-85748 Garching, Germany

Received 29 February 2016; received in revised form 22 March 2016; accepted 23 March 2016

Available online 29 March 2016

Corresponding author. E-mail address: hexishi@lnf.infn.it (H. Shi). URL: http://www.lnf.infn.it/~hexishi (H. Shi).

http://dx.doi.org/10.1016/j.nuclphysa.2016.03.047 0375-9474/© 2016 Elsevier B.V. All rights reserved.

Abstract

We measured the K-series X-rays of the K^-p exotic atom in the SIDDHARTA experiment with a gaseous hydrogen target of 1.3 g/l, which is about 15 times the ρ_{STP} of hydrogen gas. At this density, the absolute yields of kaonic X-rays, when a negatively charged kaon stopped inside the target, were determined to be $0.012^{+0.004}_{-0.003}$ for K_{α} and $0.043^{+0.012}_{-0.011}$ for all the K-series transitions K_{tot} . These results, together with the KEK E228 experiment results, confirm for the first time a target density dependence of the yield predicted by the cascade models, and provide valuable information to refine the parameters used in the cascade models for the kaonic atoms.

© 2016 Elsevier B.V. All rights reserved.

Keywords: Kaonic atom; Kaonic hydrogen; Atomic cascade; X-ray spectroscopy

1. Introduction

The measurements of the *K*-series X-rays of kaonic hydrogen K^-p and kaonic deuterium K^-d atoms give uniquely the isospin dependent antikaon–nucleon *s*-wave scattering lengths a_0 (I = 0) and a_1 (I = 1). Extracted from the energy spectra, the strong interaction induced energy shifts ϵ_{1s} and widths Γ_{1s} of the ground states of these kaonic atoms are connected to the *s*-wave scattering lengths via Deser-type formulae [1,2]. The SIDDHARTA collaboration succeeded in giving a precise evaluation of a_{K^-p} $(= \frac{1}{2}[a_0 + a_1])$ [3,4], and is preparing to perform the first precision measurement of the K^-d X-rays, to determine the isospin components a_0 and a_1 by extracting a_{K^-d} .

Moreover, a new result on the yield of K^-p K-series X-rays is essential to improve the cascade model calculation of the kaonic hydrogen, which is the most poorly understood among all the hydrogen-like exotic x^-p atoms, where x^- represents \bar{p}, μ^-, π^- , or K^- . Up to now only the KEK-PS E228 (KpX) experiment obtained $Y_{K_{\alpha}} = 0.015 \pm 0.005$ and a K_{α} to K_{tot} ratio of 0.27 for a 10 ρ_{STP} hydrogen gas target [5,6]. The spectra from three earlier experiments [7–9] where a liquid target was used, were ambiguous and did not allow a reliable subtraction of the number of X-ray events. The K^-p and K^-d K-series X-rays are difficult to measure, firstly due to their small yields, mainly as a result of the Stark mixing of the high-lying atomic states, that causes the K^- to be absorbed by the nucleus from excited states, reducing the rate of the transitions to the ground state. A second reason is the large natural width of the 1s states, which makes a high signal to background ratio hard to achieve. For K^-p , results of experiments indicate a 1s width of ~500 eV [3–6,10]; for K^-d , only theoretical predictions exist, which range from 650 eV to 1000 eV [11–13].

In this paper, we present the SIDDHARTA experimental result on the kaonic hydrogen K-series X-ray yield, which together with the KpX result, confirms a density dependence as predicted by multiple cascade calculations [14–17]. The new data will contribute to tuning the parameters including the 2p strong-interaction induced width, which is used in the latest kaonic hydrogen cascade models as the only free input parameter [16–18].

2. The SIDDHARTA experiment

The SIDDHARTA experiment was performed at the DA Φ NE electron–positron collider, where the energies of the beams were tuned to 510 MeV to produce the $\phi(1020)$ meson al-

Download English Version:

https://daneshyari.com/en/article/1836159

Download Persian Version:

https://daneshyari.com/article/1836159

Daneshyari.com