

Available online at www.sciencedirect.com

ScienceDirect

www.elsevier.com/locate/nuclphysa

Exotic resonances due to η exchange

Marek Karliner^{a,*}, Jonathan L. Rosner^b

^a School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel

^b Enrico Fermi Institute and Department of Physics, University of Chicago, 5620 S. Ellis Avenue, Chicago, IL 60637, USA

Received 11 February 2016; received in revised form 22 March 2016; accepted 26 March 2016

Available online 1 April 2016

Abstract

The meson X(3872) and several related states appear to be in large part hadronic molecules in which a heavy flavored meson (e.g., D^0) is bound to another heavy meson (e.g., \bar{D}^{*0}). Although not the only contribution to the binding, pion exchange seems to play a crucial role in generating the longest-range force between constituents. Mesons without u and d light quarks (such as D_{δ}) cannot exchange pions, but under suitable conditions can bind as a result of η exchange. Channels in which this mechanism is possible are identified, and suggestions are made for searches for the corresponding molecular states, including a manifestly exotic baryonic $\Lambda_c \bar{D}_s^*$ resonance decaying into $J/\psi \Lambda$.

© 2016 Elsevier B.V. All rights reserved.

Keywords: QCD; Exotic hadrons; Heavy quarks; Quark model

The discovery more than a dozen years ago of a very narrow resonance, X(3872) [1], right at the $D\bar{D}^*$ threshold, inaugurated a flurry of observations of charmonium-like and bottomoniumlike resonances similarly correlated with thresholds. A number of these could be identified as possessing a significant "molecular" component, in which a heavy charmed or bottom hadron was bound to an anticharmed or anti-bottom hadron [2,3]. When these hadrons possess light quarks, the longest-range force between them is single-pion exchange, in analogy with the

Corresponding author.

E-mail addresses; marek@proton.tau.ac.il (M. Karliner), rosner@hep.uchicago.edu (J.L. Rosner).

http://dx.doi.org/10.1016/j.nuclphysa.2016.03.057

^{0375-9474/© 2016} Elsevier B.V. All rights reserved.

Table 1

Possible S-wave resonances with two D_s mesons below 4.8 GeV. Only those states with C = +, permitted to couple to $J/\psi \phi$, are shown. Here $\Delta M \equiv M - M(J/\psi) - M(\phi)$. Exchanges are labeled "d" for direct $(A\bar{B} \to A\bar{B})$ and "x" for exchange $(A\bar{B} \to B\bar{A})$. "Rank" denotes anticipated ease of detection (see text). Allowed J^P values and rank are only shown for those states which can bind via η exchange.

States (J^P)	M (MeV)	ΔM (MeV)	Binding		Allowed	Rank
			by η ?	by $f_0(980)$?	J^P	
$D_s^+(0^-) D_s^-(0^-)$	3936.6	-179.8	No	d	_	_
$D_s^+(0^-) D_s^{*-}(1^-)$	4080.4	-36.0	х	d	1+	1
$D_s^{*+}(1^-) D_s^{*-}(1^-)$	4224.2	107.8	d	d	$0^+, 2^{+a}$	2
$D_s^+(0^-) D_{s0}^{*-}(2317)(0^+)$	4286.0	169.6	х	d	0^{-}	2
$D_s^+(0^-) D_{s1}^-(2460)(1^+)$	4427.8	311.4	No ^b	d, x	[1 ⁻] ^b	2
$D_s^{*+}(1^-) D_{s0}^{*-}(2317)(0^+)$	4429.8	313.4	No ^b	d, x	[1 ⁻] ^b	3
$D_s^+(0^-) D_{s1}^-(2536)(1^+)$	4503.4	387.0	No	d, x	_	-
$D_s^+(0^-) D_{s2}^{3^+}(2573)(2^+)$	4540.2	423.8	х	d	2^{-}	2
$D_{\delta}^{*+}(1^{-}) \tilde{D}_{s1}^{-}(2460)(1^{+})$	4571.6	455.2	d, x	d, x	$0^{-}, 1^{-}, 2^{-}$	3
$D_{s0}^{*+}(2317)(0^+) D_{s0}^{*-}(2317)(0^+)$	4635.4	519.0	No	d	_	_
$D_{s}^{*+}(1^{-}) D_{c1}^{-}(2536)(1^{+})$	4647.2	530.8	d, x	d, x	$0^{-}, 1^{-}, 2^{-}$	3
$D_s^{*+}(1^-) D_{s2}^{*-}(2573)(2^+)$	4684.0	567.6	d, x	d, x	$1^{-}, 2^{-}, 3^{-}$	3
$D_{s0}^{*+}(2317)(0^{+}) D_{s1}^{-}(2460)(1^{+})$	4777.2	660.8	х	d	1+	4

^a $J^P = 1^+$ forbidden by C symmetry.

^b Proximity of these two channels may lead to binding. See text.

deuteron which binds via exchange of pions and other light mesons [4–9]. The question then arises as to whether a related mechanism can play a role in binding heavy hadrons which contain no u, d quarks. In this note we identify potential channels in which η exchange is the longestrange force, and can thus form bound states with quark content such as $(c\bar{s})(\bar{c}s)$. We predict masses based on the proximity to thresholds of charmed-antistrange and anticharmed-strange pairs. Such a proximity is a widespread feature of S-wave structures [10]. We do not estimate detailed binding energies in this brief note, addressing only the utility of η exchange as a signal for molecule formation. We discuss briefly the role of other, shorter-range, exchanges such as η' , $f_0(980)$, and ϕ .

There have been observations [11–15] or failures to observe [16–18] a $J/\psi\phi$ resonance at 4140 MeV, which does not correspond to any known $D_s^{*+}D_s^{*-}$ threshold. Both η and ϕ exchange were considered in a work identifying the 4140 MeV state as a $D_s^{*+}D_s^{*-}$ molecule [19], with predicted $J^P = 0^+$ and 2^+ masses highly dependent on an arbitrary cutoff parameter. Such a molecule was also considered in Ref. [20], where the binding was due to η , σ , and ϕ exchange. The large binding energy in these two works is somewhat suspicious in view of the short range of these potentials. A recent work explains the 4140 MeV state as a mixture of 10% $D^{*0}\bar{D}^{*0}$, $10\% D^{*+}D^{*-}$, and $80\% D_s^{*+}D_s^{*-}$ [21]. If the $J/\psi\phi$ resonance at 4140 MeV is confirmed, it is likely to be due to a mechanism beyond the η exchange discussed here. For example, in Ref. [22] the 4140 MeV state is dynamically generated in the channels $D_s^{*+}D_s^{*-}$ and $D^*\bar{D}^*$ which are coupled by K^* exchange.

The pseudoscalar η cannot couple to a pair of scalar or pseudoscalar mesons, so some $(c\bar{s})(\bar{c}s)$ channels will receive a contribution to their binding from η exchange, while others will not. Thus no molecule will be expected near $D_s^+ D_s^-$ threshold. (Ref. [23] suggests X(3915) could be such a state.) In Table 1 we summarize possible resonances involving two D_s mesons which can be produced in $B \to KX$ decays. We take $M(D_s) =$

Download English Version:

https://daneshyari.com/en/article/1836180

Download Persian Version:

https://daneshyari.com/article/1836180

Daneshyari.com