

Available online at www.sciencedirect.com

ScienceDirect

Nuclear Physics A 933 (2015) 189-211

www.elsevier.com/locate/nuclphysa

Levels of two-particle and gamma bands in ¹⁹²Ir

M. Balodis, T. Krasta*

Institute of Solid State Physics, University of Latvia, LV-1063 Riga, Latvia

Received 17 June 2014; received in revised form 25 September 2014; accepted 5 November 2014

Available online 13 November 2014

Abstract

Level scheme of the transitional doubly odd nucleus 192 Ir is analysed in detail up to about 530 keV energy using earlier published experimental data of neutron capture and particle transfer reactions. A number of new levels are proposed. Obtained 192 Ir level scheme is interpreted in terms of particle-plus-rotor coupling model. It is shown that the long-lived 241 year isomer of 192 Ir has spin-parity 11^- , just like the analogous states in neighbouring 190,194 Ir.

© 2014 Elsevier B.V. All rights reserved.

Keywords: 192 Ir neutron capture and transfer reaction data analysis; 192 Ir deduced levels, I^{π} ; 192m_2 Ir isomer; 192 Ir rotational bands; Nilsson two-quasiparticle configurations; Gamma-bands; Gallagher–Moszkowski doublets

1. Introduction

For a long time ¹⁹²Ir was known as extremely complicated transitional doubly odd nucleus. However, in the beginning of 1990-ties two fundamental studies of ¹⁹²Ir levels were published.

In the paper of Kern et al. [1], two long-standing problems for understanding the ¹⁹²Ir nuclear structure were solved. The model independent level scheme of ¹⁹²Ir was developed resulting from the work of international team of 31 co-authors, and the ground state parity of ¹⁹²Ir was deduced to be positive. The level scheme, based on strong criteria, included 35 levels up to 531 keV energy. The established level scheme of ¹⁹²Ir was partially analysed using the rotor-plus-particle

E-mail addresses: martins.balodis@latnet.lv (M. Balodis), krasta@latnet.lv (T. Krasta).

^{*} Corresponding author. Tel.: +371 67261304; fax: +371 67132778.

coupling (RPC) model and the Gallagher–Moszkowski (GM) rule. The 351.7 keV 2^+ gamma band of the 4^+ ground state was proposed.

Ground state parity was deduced from the orientation study of ¹⁹²Ir nuclei in Fe (see Subsect. 2.8 in [1], and references therein). Magnetic moment of the ¹⁹²Ir ground state was measured and the measured value was compared with theoretical predictions for three possible spin 4 configurations. Since there was no fit with a single structure, a strongly mixed proton–neutron configuration was assumed.

The above results solved difficulties for establishing the 192 Ir level scheme. The 56.7 keV E3 transition was placed between the 192m_1 Ir 1^- isomer state ($T_{1/2} = 1.45$ min), and the 4^+ ground state. Spins and parities 1^- , 2^- , and 3^- were assigned to the most of low-lying levels connected by M1, E2, and M1+E2 transitions.

Several years later, Garrett and Burke [2] published a study of 192 Ir levels using charged particle transfer reactions. This study contained excitation energies and transition strengths obtained from scattering of secondary particles measured by magnetic spectrometer. Impressive amount of data was published on (d, t), (d, p), $(^{3}\text{He}, \alpha)$, (p, α) reactions. This work resulted in a partially alternative interpretation of the 192 Ir level structure differing in several important points from that proposed by Kern et al. [1].

Meanwhile, two large studies of the neighbouring ¹⁹⁴Ir nucleus have been published [3,4]. These studies have shown that there are two questions about ¹⁹²Ir which should be answered: (1) is ¹⁹²Ir structure more "deformed" than that of ¹⁹⁴Ir; (2) are there 11⁻ long-lived isomers in both ¹⁹²Ir and ¹⁹⁴Ir nuclei, as predicted by available proton–neutron configurations?

The aim of present work is to perform a consistent structure analysis of the 192 Ir low-lying levels from a viewpoint of today's experience. We include a reevaluation of the $K^{\pi}=1^-$, 2^- , 3^- band heads and rotational levels since Ref. [1] contains no proposals for levels of the third 1^- band, and two expected 2^- bands. We search for all band heads predicted by the lowest proton–neutron configurations in the frameworks of RPC model, and, as far as possible, for additional rotational levels. Since 192 Ir is expected to be more "deformed" than 194 Ir [4] we will try to find more regularity in the level scheme of 192 Ir.

One of present authors (M.B.) made a report on the structure of 192 Ir at the CGS 9 Symposium in 1996 [5]. However, the 192 Ir level scheme proposed in that report was regarded as tentative since existence of several low energy levels, especially the 6^+ 13 keV, and the 6^- 16 keV level, was not registered in transfer reaction experiments.

The present paper has the following sections: (Section 2) analysis of available experimental data including the low-energy gammas and transition multipolarities, as well as the high energy gammas, ARC population rates, and transfer reactions; (Section 3) discussion covering bands and levels, the long-lived isomer 192m_2 Ir, and final comments, including structure comparison between low-lying level schemes of 190,192,194 Ir; (Section 4) conclusions.

2. Analysis of experimental data

2.1. Low energy capture gamma-ray spectra and ICC values

Kern et al. have presented a compact table of low energy radiation data in Table 2 of Ref. [1]. This table contains about 300 transitions with energies ranging from 19 to 633 keV. However, only 118 transitions have been placed in the level scheme of ¹⁹²Ir deduced in [1]. Many of the

Download English Version:

https://daneshyari.com/en/article/1836287

Download Persian Version:

https://daneshyari.com/article/1836287

<u>Daneshyari.com</u>