

Nuclear Physics A 859 (2011) 126-139

www.elsevier.com/locate/nuclphysa

First search for double β decay of dysprosium

P. Belli ^a, R. Bernabei ^{a,b,*}, F. Cappella ^{c,d}, R. Cerulli ^e, F.A. Danevich ^f, S. d'Angelo ^{a,b}, M.L. Di Vacri ^e, A. Incicchitti ^{c,d}, M. Laubenstein ^e, S.S. Nagorny ^f, S. Nisi ^e, A.V. Tolmachev ^g, V.I. Tretyak ^f, R.P. Yavetskiy ^g

a INFN sezione Roma "Tor Vergata", I-00133 Rome, Italy
 b Dipartimento di Fisica, Università di Roma "Tor Vergata", I-00133 Rome, Italy
 c INFN sezione Roma "La Sapienza", I-00185 Rome, Italy
 d Dipartimento di Fisica, Università di Roma "La Sapienza", I-00185 Rome, Italy
 e INFN, Laboratori Nazionali del Gran Sasso, 67010 Assergi (AQ), Italy
 f Institute for Nuclear Research, MSP 03680 Kyiv, Ukraine
 g Institute for Single Crystals, 61001 Kharkiv, Ukraine

Received 17 February 2011; received in revised form 10 March 2011; accepted 11 April 2011

Available online 22 April 2011

Abstract

A search for double β decay of dysprosium was realized for the first time with the help of an ultra-low background HP Ge γ detector. After 2512 h of data taking with a 322 g sample of dysprosium oxide limits on double beta processes in 156 Dy and 158 Dy have been established on the level of $T_{1/2} \geqslant 10^{14} - 10^{16}$ yr. Possible resonant double electron captures in 156 Dy and 158 Dy were restricted on a similar level. As a by-product of the experiment we have measured the radioactive contamination of the Dy₂O₃ sample and set limits on the α decay of dysprosium isotopes to the excited levels of daughter nuclei as $T_{1/2} \geqslant 10^{15} - 10^{17}$ yr.

© 2011 Elsevier B.V. All rights reserved.

Keywords: RADIOACTIVITY ¹⁵⁶Dy(2EC), (β^+EC) , (α) ; ¹⁵⁸Dy(2EC), (α) ; ^{160,161,162}Dy(α); measured E_γ , I_γ ; deduced $T_{1/2}$ lower limits for α and various 2β -decay modes. Natural Dy₂O₃ sample of 322 g. Ultra-low background HPGe detector at the Gran Sasso National Laboratory underground facility

^{*} Corresponding author at: INFN sezione Roma "Tor Vergata", I-00133 Rome, Italy. E-mail address: rita.bernabei@roma2.infn.it (R. Bernabei).

1. Introduction

The double beta (2β) decay experiments are considered to-date as the best way to determine an absolute scale of the neutrino mass and to establish the neutrino mass hierarchy, to clarify the nature of the neutrino (Majorana or Dirac particle), to look for existence of right-handed admixtures in the weak interaction and of hypothetical Nambu–Goldstone bosons (Majorons), and to test some other effects beyond the Standard Model [1]. The developments in the new experimental techniques during the last two decades lead to an impressive improvement of sensitivity to the neutrinoless (0ν) mode of $2\beta^-$ decay up to 10^{23} – 10^{25} yr [2]. Allowed in the Standard Model the two neutrino (2ν) double beta decay was detected for 10 nuclides with the half-lives in the range of 10^{18} – 10^{24} yr [2,3].

The sensitivity of the experiments to search for the double electron capture (2ε) , the electron capture with emission of positron $(\varepsilon\beta^+)$, and the double positron $(2\beta^+)$ decay is substantially lower: the best counting experiments give only limits on the level of 10^{18} – 10^{21} yr [2,4–6]. There is a strong motivation to develop experimental technique to search for these processes: study of neutrinoless 2ε and $\varepsilon\beta^+$ decays could clarify the contribution of the right-handed admixtures in weak interactions [8]. Dysprosium contains two potentially 2β active isotopes: 156 Dy with one of the largest releases $Q_{2\beta} = (2012 \pm 6)$ keV (therefore both 2ε and $\varepsilon\beta^+$ channels of decay are possible), and 158 Dy ($Q_{2\beta} = (284.6 \pm 2.5)$ keV, only double electron capture is energetically allowed) [9]. The decay schemes of the triplets 156 Dy– 156 Tb– 156 Gd and 158 Dy– 158 Tb– 158 Gd are presented in Figs. 1 and 2, respectively.

It should be mentioned the possibility of a resonant enhancement of the neutrinoless double electron capture in $^{156}\mathrm{Dy}$ and $^{158}\mathrm{Dy}$ due to energy degeneracy. The resonant double electron capture was discussed in Refs. [12–15], where an enhancement of the decay rate by some orders of magnitude was predicted for the case of coincidence between the released energy and the energy of an excited state. According to [15], high Z atoms are strongly favored to search for resonant 2ε decay. Dysprosium has one of the highest Z among nuclides for which resonant processes could occur.

Resonant captures are possible on a few excited levels of 156 Gd and one level of 158 Gd. The properties of the excited levels are listed in Table 1. Because transitions with difference in spin more than 2 are strongly suppressed, we consider in this study only the levels of 156 Gd with spin ≤ 2 . However, we left in the list the level of 158 Gd with the spin $^{4+}$ to which the resonant capture is possible.

Unfortunately, the isotopic abundances of both potentially double beta active dysprosium isotopes are rather low: concentrations of 156 Dy and 158 Dy in the natural dysprosium are 0.056(3)% and 0.095(3)%, respectively [16].

To our knowledge there were no attempts yet to search for double β decays of ¹⁵⁶Dy and ¹⁵⁸Dy. The aim of the present work was the search for 2β processes in the dysprosium isotopes with the help of ultra-low background high purity (HP) Ge γ spectrometry. As a by-product of the experiment we have estimated the radioactive contamination of the dysprosium oxide sample and set limits on the α decay of the dysprosium isotopes to excited levels of the daughter nuclei.

¹ An indication for $2\beta^+$ decay processes in ¹³⁰Ba and ¹³²Ba was obtained in geochemical measurements [7]; however, this result has to be confirmed in a direct counting experiment.

Download English Version:

https://daneshyari.com/en/article/1836411

Download Persian Version:

https://daneshyari.com/article/1836411

Daneshyari.com