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a b s t r a c t

Theory of potential step chronoamperometry under limiting current conditions and for purely diffus-
ional transport at a microband electrode has been a subject of several studies. However, no complete and
explicit expressions for the Faradaic current density and the Faradaic current have been reported thus
far. In the present study such expressions are derived using a novel theoretical approach. The microband
is considered as a limiting case of an elliptic cylinder, when the length of the smallest diameter of the
elliptic cross-section tends to zero. Solution to the problem of heat conduction around an elliptic cylin-
der, due to Tranter [Quart. J. Mech. Appl. Math. 4 (1951) 461], is utilised. Following Tranter, the method
of separation of variables in the Laplace space is used, resulting in two Mathieu differential equations.
The concentration of the depolarizer, the Faradaic current density, and the Faradaic current, are then
expressed as inverse Laplace transforms of certain infinite series involving appropriate Mathieu functions.
The series are amenable to further analytical examinations. In particular, it is proven that a quasi-steady
state develops at large time. It is also demonstrated how the popular idea, of an hemicylinder electrode
“equivalent” to a microband, has to be understood to be correct. Numerical evaluation of the series pro-
vides unprecedentedly highly accurate solution values. Hence, the present solutions should be preferred
over formerly used low-accurate formulae, for the purposes of experimental data analysis, and for the
testing of modelling/simulation techniques.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

This paper is devoted to the theoretical description of potential
step chronoamperometry (PSCA) at a single planar microband
electrode, embedded flush in an insulator plane. Limiting current
conditions and purely diffusional transport are assumed. Compli-
cations such as natural convection or double layer charging are
not taken into account. The electrode is assumed to be infinitely
long, so that the edge effects, in reality present at the ends of the
microband, need not be considered. Consequently, the theory does
not depend on the spatial coordinate along the axis parallel to the
microband. There are at least two reasons why such a theory is
important for electrochemistry. First, experiments of this kind are
routinely performed in practical applications of microelectrodes.
Second, theoretical models of PSCA may serve as challenging
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benchmark examples for testing various analytical and computa-
tional approaches to electroanalytical modelling. This is because
of the presence of difficulties typical for the microelectrodes: edge
effects characterised by spatial and temporal singularities of the
current density. It is therefore not surprising that over the past
decades there have been many theoretical and digital simulation
studies devoted to such experiments. Readers will find compre-
hensive lists of the studies in the book by Britz [1], and in two
more recent reviews by Rajendran [2], and Britz and Strutwolf [3].
References [1–3] survey also the literature about the modelling of
microband array electrodes that are not considered in the present
paper.

It is perhaps more surprising that no electrochemist has pre-
sented thus far a complete and explicit analytical solution, to the
problem discussed. The solutions published can be divided into
approximate analytical, semi-analytical, and purely numerical. To
the approximate analytical solutions belong those obtained by
Aoki et al. [4,5], who used a mathematically intricate Wiener-
Hopf technique to deduce approximate expressions for the PSCA
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current, valid for small and large times. The semi-analytical solu-
tions include those reported by Cope et al. [6,7], who formulated
the theory in terms of integral equations in the Laplace space.
The integral equations were subsequently solved numerically by a
sophisticated method accounting for the singularities. Other semi-
analytical solutions were obtained by Mirkin and Bard [8,9], by
first deriving two-dimensional integral equations for the Faradaic
current density in the space-time domain, and next solving them
by means of a quadrature-type method. The solutions obtained in
Refs. [4–9] are either not complete or not explicit (or both). Com-
pleteness requires the validity of the solutions for any time value,
and for any relevant location in space. For explicitness, a need to
solve some implicit equations (such as integral or differential equa-
tions) must be avoided: important quantities of interest, such as
the Faradaic current density and Faradaic current, should be com-
putable directly as right-hand sides of appropriate mathematical
equations. Finally, as an example of many purely numerical solu-
tions we mention the digital simulation study by Britz et al. [10],
who obtained reference values of the PSCA limiting current by
means of finite difference methods.

Apart from the above rigorous theoretical models, a num-
ber of electrochemists [6,11–13] have presented various heuristic
approximations to the PSCA current, mostly in order to cover the
intermediate time interval, in which the analytical solutions from
Refs. [4,5] were not satisfactory. Such approximations are usually
arbitrary and not very accurate. Some comparisons of the heuristic
approximations are available in Refs. [2,10]. Further comparisons
will be given in the present paper.

A summary of the various formulae for the current, reported in
the references listed above, and including the heuristic approxima-
tions, is given in Appendix.

In the present work we describe a novel theoretical approach
that allows us to obtain previously unknown complete and explicit
semi-analytical solutions to the PSCA at a microband electrode.
The approach relies on viewing the initial boundary value prob-
lem (IBVP) for the PSCA at a microband electrode as a limiting
case of a slightly different model of PSCA at a hypothetical infi-
nite elliptic cylinder microelectrode, when one radius of the elliptic
cross-section of the cylinder tends to zero. This allows us to utilise
the analytical solution to the mathematically equivalent problem
of heat conduction around an elliptic cylinder, published in 1951
by Tranter [14].

Complete explicit expressions for the Faradaic current density
and the Faradaic current will be obtained in the form of an inverse
Laplace transform of certain infinite series, which can be evaluated
by applying a numerical inversion of the Laplace transform. The
formulae may appear complicated and not enabling an immediate
identification of the key variables and their influence on the elec-
trochemical responses. However, we shall demonstrate that further
analytical examinations and interpretations of the formulae are
possible, leading to interesting and useful conclusions. We shall
also see that highly accurate numerical values can be computed,
that would be much more difficult or even impossible to obtain by
usual 2D digital simulations [1].

Essential elements of the present theory are outlined in Sect. 2.
Section 3 describes results of numerical tests, comparing the theory
with independently available numerical reference data, and with
formulae for limiting cases.

Readers interested in potential extensions of the present theory,
to include additional effects such as natural convection or double
layer charging, may be guided by Refs. [15,16] (the first reference
addresses natural convection at a microband; the second deals with
double layer charging at a microdisk electrode). Considering such
effects is likely to result in a substantially more complicated for-
malism, and any attempt to take such effects into account is far
outside the scope of the present study.

2. Theory

We begin with the standard presentation of the relevant IBVP
in Cartesian coordinates (Subsect. 2.1), then reformulate it using
elliptic coordinates (Subsect. 2.2). The Tranter solution [14] is sub-
sequently described (Subsect. 2.3), allowing us to derive explicit
formulae for the Faradaic current density and the Faradaic current
(Subsect. 2.4). Finally, we discuss the limiting cases of large and
small times (Subsect. 2.5-2.7).

2.1. The IBVP in Cartesian coordinates

The IBVP describing the PSCA at a microband electrode is
usually formulated in the Cartesian coordinate system (x, y, z),
assuming that the electrode and the insulator surfaces form the
x − y plane, and that the electrode is located at −a/2 < x < a/2 and
−∞ < y < ∞, where a is the electrode width. The insulator is located
at −∞ < x < − a/2, a/2 < x < ∞, and −∞ < y < ∞. As the electrode band
is assumed infinite in the direction of y, the IBVP does not depend
on the y coordinate. Owing to the expected symmetry of the IBVP,
with respect to the y − z plane, the spatial domain is usually further
restricted to the x > 0, z > 0 quadrant of the x − z plane.

The diffusion partial differential equation (PDE):

∂c(x, z, t)
∂t

= D

[
∂2

c(x, z, t)
∂x2

+ ∂2
c(x, z, t)
∂z2

]
(1)

is accompanied by the initial condition

c(x, z, 0) = c�. (2)

In Eqs. (1) and (2) c(x, z, t) denotes the concentration of a depo-
larizer, D is its diffusion coefficient, and c� is its initial uniform
concentration. The boundary conditions (all holding at t > 0) are as
follows. At the x − y plane the boundary conditions are:

c(x, 0, t) = 0 (3)

when 0 < x < a/2 (at the electrode surface), and

∂c(x, z, t)
∂z

∣∣∣∣
z=0

= 0 (4)

when a/2< x < ∞ (at the insulator surface). Eq. (3) expresses the
concentration drop down to zero, as a result of applying, at t = 0,
a large potential step to the electrode, thereby enforcing limiting
current conditions. The no-flux condition, Eq. (4), expresses the lack
of the consumption of the depolarizer at the insulator surface. In
the electrolyte bulk the boundary conditions are:

c(∞, z, t) = c�, (5)

c(x, ∞, t) = c�. (6)

At the symmetry plane y − z one usually assumes the boundary
condition

∂c(x, z, t)
∂x

∣∣∣∣
x=0

= 0. (7)

When solving the IBVP (1)-(7), one is primarily interested in
obtaining theoretical predictions for the Faradaic current den-
sity j(x, t), and the Faradaic current i(t) (per unit length of the
microband), since the current is the usual experimental observable.
Current density is normally not measurable experimentally, but its
detailed knowledge offers insights into the progress of the electro-
chemical experiment. Knowing exact values of the current density
is also useful for validating results of various modelling or simula-
tion approaches. In the case of an electroreduction reaction taking
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