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a b s t r a c t

In this paper, the longitudinal dielectric function �l(k) of primitive electrolyte solutions is discussed.
Starting from a modified mean spherical approximation, an analytical dielectric function in terms of
two parameters is established. These two parameters can be related to the first two decay parameters
k1,2 of the dielectric response modes of the bulk system, and can be determined using constraints of
k1,2 from statistical theories. Furthermore, a combination of this dielectric function and the molecular
Debye-Hückel theory[J. Chem. Phys. 135(2011)104104] leads to a self-consistent mean filed description of
electrolyte solutions. Our theory reveals a relationship between the microscopic structure parameters of
electrolyte solutions and the macroscopic thermodynamic properties, which is applied to concentrated
electrolyte solutions.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The longitudinal dielectric function �l(k) of an isotropic solu-
tion is the wave-number-dependent longitudinal component of
the wave-vector-dependent static dielectric tensor �˛ˇ(k), which
describes the charge response of a bulk system to an external
electric potential [1,2]. This dielectric function has important appli-
cations in solvation processes [3–5], in electron transfer processes
[6–9], in physics of electrostatic absorbtion [10–13], and in ionic
criticality [14,15]. �l(k) can be evaluated experimentally or theo-
retically, however, and in most cases only numerical values of �l(k)
are available. So a suitable model of the dielectric function would
not only provide a reasonable fitting function of �l(k), but would
also be a good starting point to study Coulomb-interaction-related
phenomena.

For polar fluids, the simplest model of �l(k) is to take �l(k) =�s

with �s the bulk dielectric constant, where the k-dependence is
neglected as in the Born model of solvation [16–18]. Later stud-
ies reveals the existence of dramatic k-dependence of �l(k), that
is, the dielectric function becomes negative in certain region of
k [19,20], so more sophisticated models are proposed to capture
such features. For example, a phenomenological Landau Hamilto-
nian which contains two independent polarization modes, is used
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to derive an analytical expression of �l(k) for polar fluids [21,22].
This theory can well explain the main feature of dielectric function
from experiments or from molecular dynamics simulations, and has
been successfully applied to polar fluids such as water, acetonitrile
and dimethyl [23]. It is also possible to build �l(k) with other num-
ber of polarization modes, and the interested readers can refer to
Ref [24] for a comprehensive review.

For electrolyte solutions, an expression of the dielectric func-

tion �s/�l(k) = k2
D

k2
D

+k2 can be found from the Debye-Hückel(DH)

theory [25], which describes the dielectric response by a lin-
earized Poisson-Boltzmann equation as �2�(r) = k2

D�(r), with

�(r) = q
�s
e−kDr
r a Yukawa electric potential and kD the inverse Debye

length that related to the ionic strength [26]. However, such a
dielectric function is only valid for dilute solution, and is not
suitable for concentrated electrolytes. Another systematic way to
derive analytical expressions for �l(k) is to use analytical radial dis-
tribution function gij(r) from the integral equation theory, such
as the mean spherical approximation(MSA) and its extensions
[2,27,28]. In our previous studies on electron transfer processes
in electrolyte solutions, a half empirical analytical functional has
been used to fit the numerical �l(k) calculated from Hypernetted
chain(HNC) theory or molecular dynamics simulations [8,9].

In this study we demonstrate that the empirical function used
in our previous studies can be derived from rigorous microscopic
statistical theory of liquids. The correlation function hij(r) = gij(r) − 1
and the direct correlation function cij(r) are two important concepts
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in the theory of simple liquids, and are related to each other via the
Ornstein-Zernike(OZ) equation [2]. Furthermore, the OZ equation
combined with a suitable closure of cij(r) can be used to find the
correlation function hij(r). Our strategy is to use a modified mean
spherical approximation as the closure of cij(r), where the asym-
metric part of cij(r) inside the core domain is a linear function of r,
from which gij(r) and hence the longitudinal dielectric function�l(k)
can be evaluated analytically. This �l(k) has two parameters which
can be related to the first two decay parameters k1,2 of the dielectric
response modes of the bulk solutions. Using analytical constraints
on k1,2 from various statistical theories, actually we find a family
of analytical dielectric function. Furthermore, this dielectric func-
tion is combined with our molecular Debye-Hückel(MDH) theory
[25] to give a mean field description of the electrolyte solutions,
where the dielectric response is characterized by a linear combina-
tion of DH-like response modes, and another analytical expression
of dielectric function is derived. Our study establishes a relation-
ship between the microscopic structure parameters such as the first
two decay parameters k1,2 and the thermodynamic properties of an
electrolyte solution. Our strategy is applied to primitive model of
electrolyte solutions, and the validity is tested for the thermody-
namic properties.

This article is organized as following: in section 2 an analytical
expression for �l(k) of an electrolyte solution is built from a modi-
fied mean spherical approximation, in section 3 the MDH theory of
electrolyte solutions on the basis of �l(k) is introduced. Application
to concentrated electrolyte solutions is shown in section 4. Finally
a brief conclusion is drawn in section 5.

2. The static longitudinal dielectric function �l(k) from a
modified mean spherical approximation

In this section, we will show how to derive an analytical �l(k) of
electrolyte solutions based on a modified mean spherical approxi-
mation(MMSA).

Consider a restricted primitive model of electrolyte solutions.
Ions are immersed in a continuum with bulk dielectric constant
�s, the reduced temperature is ˇ = 1/kBT, e is the element charge
and Zj = qj/e is the charge number of the j-th ion. The particle
number density of the i-th species is ni, so n =

∑
ini is the total

number density, and xi = ni/n is the molar fraction of i-th type par-
ticle. The interaction potential between two ions is uij(r) = us

ij
(r) +

qiqj
�sr , with us

ij
(r) a hard sphere potential such that us

ij
(r) = ∞, r ≤

�ij and us
ij
(r) = 0, r > �ij . The cations and anions have the same

diameter and opposite charges such that �++ =�−− =�+− =�−+ =�,
q+ = − q− = q = Ze, where + and − denotes the cation and anion
species, respectively.

According to statistical theory of simple liquids, the microscopic
structure of a liquid can be described by the correlation function
hij(r) = gij(r) − 1 or the direct correlation function cij(r), and it is
known that hij(r) and cij(r) are related to each other via the Ornstein-
Zernike(OZ) equation [2]. We will use the MMSA closure combined
with the OZ equation to find hij(r) of an electrolyte solution, and
the details are as following.

Due to the symmetry of the system, one can split the correla-
tion function hij(r) and the direct correlation function cij(r) into a
symmetric part and an asymmetric part [27], that is

h++(r) = h−−(r) = hs(r) + ha(r), (1)

h+−(r) = h−+(r) = hs(r) − ha(r), (2)

c++(r) = c−−(r) = cs(r) + ca(r), (3)

c+−(r) = c−+(r) = cs(r) − ca(r), (4)

Hereafter we denote fij(k) =
∫
dreik · rfij(r) =∫ ∞

0
fij(r)4�

Sin(kr)
kr r2dr as the three dimensional Fourier trans-

form of fij(r) with fij(r) = hij(r) and cij(r). The symmetric part cs(r)
can be evaluated from the Percus-Yevick theory of hard sphere
fluids as [2]

cs(r) = −t1 − 6�t2(
r

�
) − �t1

2
(
r

�
)
3
, r ≤ � (5)

cs(r) = 0, r > � (6)

with t1 = (1−2�)2

(1−�)4 , t2 = − (2+�)2

4(1−�)4 , and � = �
6 n�

3 is the packing frac-

tion of the electrolytes. This analytical cs(r) can be used to evaluate
the symmetric part of the correlation function hs(r) based on the
OZ equation [1 + nhs(k)][1 − ncs(k)] = 1. A modified mean spherical
approximation is proposed to evaluate the asymmetric part ca(r),
such that

ca(r) = a+ br, r ≤ � (7)

ca(r) = −ˇZ
2e2

�sr
, r > �. (8)

The Fourier transformation of ca(r) reads

ca(k) =
∫ ∞

0

dr4�r2
Sin(kr)
kr

ca(r)

= Cos(k�)(a1k2 − a2) + kSin(k�)a3 + a2

k4n
, (9)

with a1 = 4�a�n− 4�bn�2 − k2
D, a2 = −8�bn and

a3 = 8�b�n − 4�an.
From now on we show how to evaluate�l(k) with ca(k). The static

charge structure factor Szz(k) of the bulk system can be evaluated
as [2]

Szz(k) =
∑
i

Z2
i xi + n

∑
i,j

ZiZjxixjhij(k), (10)

with hij(k) =
∫

dreik·rhij(r) the Fourier transform of hij(r). One can
evaluate ha(k) using the OZ equation [1 + nha(k)][1 − nca(k)] = 1, and
then Szz(k) reads

Szz(k) = Z2(1 + nha(k)) = Z2

1 − nca(k) . (11)

According to the linear response theory in ionic fluids [2], the bulk
dielectric function �l(k) is related to the static charge structure
factor as

�s
�l(k)

= 1 − 4�ˇne2

εsk2
Szz(k), (12)

and then a response function defined as�(k) ≡ 1 − �s
�l(k)

can be eval-

uated as

�(k) = 4�ˇne2

�0k2
Szz(k). (13)

Combine Eq.(9), Eq.(10) and Eq.(13), the response function �(k) is
found to be

�(k) = k2
Dk

2

k4 − (a1k2 − a2)Cos(k�) − a3kSin(k�) − a2
. (14)

Eq.(14) represents a family of dielectric function with various con-
trol parameters, and is our key result. As one can see, this equation
can be taken as a justification for the empirical fitting function used
in our previous studies [8,9].

It is well known that the mean electrostatic potential �(r) of
an ion immersed in an electrolyte solution satisfies an asymp-

totic behavior as �(r)∼∑
l˛l

e−klr
r , with kl a decay parameter of the

l-th Yukawa potential [29–32]. The decay parameters kl can be
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