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Abstract

Based on the Thomas–Fermi solution for compressed electron gas around a giant nucleus, we study 
electric pulsations of electron number-density, pressure and electric fields, which could be caused by 
an external perturbations acting on the nucleus or the electrons themselves. We numerically obtain the 
eigen-frequencies and eigen-functions for stationary pulsation modes that fulfill the boundary-value prob-
lem established by electron-number and energy–momentum conservation, equation of state, and Maxwell’s 
equations, as well as physical boundary conditions, and assume the nucleons in β-equilibrium at nuclear 
density. We particularly study the configuration of ultra-relativistic electrons with a large fraction contained 
within the nucleus. Such configurations can be realized for a giant nucleus or high external compression 
on the electrons. The lowest modes turn out to be heavily influenced by the relativistic plasma frequency 
induced by the positive charge background in the nucleus. Our results can be applied to heavy nuclei in the 
neutron star crust, as well as to the whole core of a neutron star. We discuss the possibility to apply our 
results to dynamic nuclei using the spectral method.
© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

The Thomas–Fermi model that was found independently by Thomas [1] and Fermi [2] in 1927 
quantitatively describes neutral and ionized atoms of large electron-numbers with great success 
(see for example Refs. [3–11]). The Thomas–Fermi solution turns out to be exact when the 
electron-number goes to infinity [12]. Essentially, the Thomas–Fermi model is a semi-classical 
and mean-field approach to the problem of many electrons around a nucleus with a large number 
of protons. It describes a neutral or charged static equilibrium configuration of electrons around 
a nucleus with or without compression. While it turned out to be of limited use in the realm of 
atomic physics, it has been applied very successfully in astrophysical settings (see for example 
Refs. [13–17]).

In this article, on the basis of the Thomas–Fermi solution, namely the equilibrium config-
urations of electrons compressed around a giant nucleus, we investigate radial perturbations 
(electric pulsations) with spherical symmetry upon the equilibrium configurations. We find that 
the spectrum of pulsation modes is determined by two effects: (i) outside the nucleus the speed 
of sound of the electron gas determines propagation, with possible contributions from both non-
and ultra-relativistic zones, while (ii) inside the nucleus there is an additional contribution due 
to the relativistic plasma frequency induced by the nuclear positive charge background. For suf-
ficiently low frequency modes this leads to the perturbation dying away exponentially within 
the volume of the nucleus, rendering it effectively unavailable for wave propagation. To study 
the configuration of ultra-relativistic electrons with a large fraction contained within the nucleus, 
we choose a proton number Z = 106 for the purpose of practical numerical simulation and il-
lustration of (ii). While the effects we observe are also present at smaller Z ≈ 103–104, a more 
realistic configuration that might be expected in the very deep crust of neutron stars in the form 
of pasta equation of state, they are less pronounced (see Fig. 5), and high electron densities par-
tially rely on the gravitational pressure in this case. Instead we choose Z = 106 because here 
most electrons are kept inside the nucleus solely by the electric interaction, and β-equilibrium is 
saturated throughout the nucleus. For the effects we observe it is essential that electron densities 
approach proton densities inside the nucleus, in any other case including high pressure laboratory 
setups, the spectrum of the vibrational modes would be dominated by the equation of state and 
the corresponding speed of sound of the electron gas, the only feature being a transition from 
non- to ultra-relativistic conditions (see discussion in the conclusions and Fig. 5).

The electrons around a static nucleus are treated as a perfect fluid described by thermody-
namic number-density n, energy-density ρ and pressure p with non-vanishing electric potential 
and field. In addition to the equation of state at zero temperature, these physical quantities fully 
obey the Maxwell field-equation, Euler equation and the first thermodynamical law that follows 
from electron-number and energy–momentum conservations. This system is completely deter-
mined with appropriate physical boundary conditions. In order to study the perturbative electric 
pulsations, we have linearized these relations and equations, based on the prescription of Eule-
rian and Lagrangian perturbations of the Thomas–Fermi equilibrium configuration. As a result 
we obtain a homogeneous second-order differential equation for perturbations satisfying appro-
priate physical boundary conditions.

As a first step, we focus on the stationary solution (∝ eiωt ) with the characteristic eigen-
frequencies ω of electric perturbations (pulsations) of the Thomas–Fermi system, so as to un-
derstand what are time-scales (inverse frequencies) at which the system responds to external 



Download English Version:

https://daneshyari.com/en/article/1836842

Download Persian Version:

https://daneshyari.com/article/1836842

Daneshyari.com

https://daneshyari.com/en/article/1836842
https://daneshyari.com/article/1836842
https://daneshyari.com

