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a b s t r a c t

Electric double layer is theoretically described within the mean-field approach by taking into account the
orientational ordering of water dipoles and asymmetric size of cations and anions. Analytical expressions
for the spatial distribution of ions and water dipoles are derived. The effect of asymmetric ionic size on
accumulation of counterions and partial depletion of water molecules near the charged surface, on spatial
dependence of relative permittivity and on differential capacitance of electric double layer are presented.
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1. Introduction

Accumulation of counterions and depletion of coions in the
vicinity of a charged surface in contact with an electrolyte solu-
tion results in a formation of electric double layer (EDL) [1–15].
Helmholtz initiated the investigation of EDL [16,17] followed by
Gouy [18] and Chapman [19] who upgraded the model by consid-
ering Boltzmann spatial distribution of the counterions and coions
in the Poisson’s equation [1,20–22]. Later, Debye and Hückel gen-
eralized the Gouy-Chapman model [1,20].

Stern [23] was the first to include the finite size of ions in the
EDL model by assuming the distance of closest approach of counter-
ions to the charged surface [24,25]. A more sophisticated approach
to take into account the finite size of ions in EDL was introduced by
Bikerman [2] and followed by further advance studies [8,12,26–36].
EDL models were further improved by considering the orientational
ordering of water dipoles resulting in prediction of local decrease of
relative permittivity of electrolyte solution in the saturation regime
close to the charged surface [37–39,12,14,15,24,40–44].

Recently, a mean-field model of EDL was developed by
Gongadze and Iglič [45] (referred as in this paper as GI model)
which encapsulates both, the excluded volume effect (finite size
of ions) and orientational ordering of water dipoles, considered as
point-like dipoles at the centres of the finite sized spheres with

∗ Corresponding author.: Tel.: +386 1 4768 825; fax: +386 1 4768 850.
E-mail address: ales.iglic@fe.uni-lj.si (A. Iglič).

permittivity equal to the square of optical refractive index of water.
In the GI model, the different size of positively and negatively
charged ions in EDL was not taken into account [45]. Therefore,
in this paper the equations of GI model are generalised in order to
incorporate the latter feature. The corresponding analytical expres-
sions for ion spatial distribution functions are derived and included
respectively into the Poisson’s equation. The influence of differ-
ent size of ions on the ion and water spatial distribution functions,
on spatial dependence of relative permittivity and on differential
capacitance for negative and positive voltage are presented and
discussed.

2. Theory

2.1. Equal size of ions

By assuming that coions, couterions and water molecules
occupy a single lattice site, the number density of water molecules
(n0w), counterions (n0) and coions (n0) in the bulk electrolyte solu-
tion is constant. Therefore, the probability that a single lattice site
in a bulk solution is occupied by one of the three kinds of particles
(positive ions, negative ions and water molecules) in the electrolyte
solution is:

P+(x → ∞) = P−(x → ∞) = n0

n0 + n0 + n0 w
, (1)

Pw(x → ∞) = n0 w

n0 + n0 + n0 w
, (2)
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The corresponding number densities in a bulk solution are:

n+(x → ∞) = n−(x → ∞) = ns
n0

n0 + n0 + n0 w
, (3)

nw(x → ∞) = ns
n0 w

n0 + n0 + n0 w
, (4)

where ns is the number density of lattice sites:

ns = 2n0 + n0 w. (5)

In the vicinity of the charged surface, the number density of ions and
water molecules is influenced by the charged surface, so the proba-
bilities that a single lattice site is occupied by a particle of one of the
three kinds should be corrected by the corresponding Boltzmann
factors, leading to ion and water dipole distribution functions in
the form [14,45]:

n+(x) = ns
n0e−e0 � ˇ

n0ee0 � ˇ + n0e−e0 � ˇ + n0w 〈e−� po E ˇ cos(ω)〉ω

, (6)

n−(x) = ns
n0ee0 � ˇ

n0ee0 � ˇ + n0e−e0 � ˇ + n0w 〈e−� po E ˇ cos(ω)〉ω

, (7)

nw(x) = ns
n0w〈e−� po E ˇ cos(ω)〉ω

n0ee0 � ˇ + n0e−e0 � ˇ + n0 w 〈e−� po E ˇ cos(ω)〉ω

, (8)

where ˇ = 1/kT, kT is the thermal energy, k is the Boltzmann con-
stant, T is the absolute temperature, e0 is the unit charge and � is
the electric potential. Further

〈e−� po E ˇ cos(ω)〉ω =
2 �

∫ 0
�

d(cos ω) e−� po E ˇ cos(ω)

4 �

= sinh(� p0 E ˇ)
� p0 E ˇ

. (9)

is the water dipole Boltzmann factor after rotational averaging over
all possible angles ω [14,45,5]. The angle ω is the angle between
the gradient of the electric potential and the vector of the water
dipole moment [14,45]. Here p0 is the magnitude of the external
water dipole moment, E is the magnitude of electric field strength.
In the model, a single water molecule is considered as a finite
sized sphere with permittivity n2 and a point-like rigid (permanent)
dipole/quadrupole at the centre of the sphere, where n is the opti-
cal refractive index of water [14,45]. Hence, the cavity field and the
electronic polarisability of water molecules are taken into account
[46], while the short range interactions between water molecules
are neglected. Accordingly, the value of the constant � is given by
[45,14]:

� = 3
2

(
2 + n2

3

)
. (10)

2.2. Different size of ions

Consider now a case where negative and positively charged ions
occupy more than one lattice site, while a single water molecules
still occupy just one lattice site. In the following, ˛+ and ˛− are the
number of lattice sites occupied by a single positive and negative
ion, respectively. The probabilities that a single lattice site in the
bulk solution is occupied by one of the three kind of particles in
electrolyte solution (positive ion, negative ion and water molecule)
are then:

P+(x → ∞) = ˛+n0

˛+n0 + ˛−n0 + n0 w
, (11)

P−(x → ∞) = ˛−n0

˛+n0 + ˛−n0 + n0 w
, (12)

Pw(x → ∞) = n0 w

˛+n0 + ˛−n0 + n0 w
, (13)

while the corresponding number densities in bulk are

n+(x → ∞) =
(

ns

˛+

)
˛+n0

˛+n0 + ˛−n0 + n0 w
, (14)

n−(x → ∞) =
(

ns

˛−

)
˛−n0

˛+n0 + ˛−n0 + n0 w
, (15)

nw(x → ∞) = ns
n0 w

˛+n0 + ˛−n0 + n0 w
, (16)

where ns is the number density of lattice sites:

ns = ˛+n0 + ˛−n0 + n0 w. (17)

Similarly as in [14,45], in the vicinity of the charged surface, the
number densities of ions and water molecules are corrected by the
corresponding Boltzmann factors:

n+(x) = ns
n0e−e0 � ˇ

˛− n0ee0 � ˇ + ˛+n0e−e0 � ˇ + n0w 〈e−� po E ˇ cos(ω)〉ω

,

(18)

n−(x) = ns
n0ee0 � ˇ

˛− n0ee0 � ˇ + ˛+n0e−e0 � ˇ + n0w 〈e−� po E ˇ cos(ω)〉ω

,

(19)

nw(x) = ns
n0w〈e−� po E ˇ cos(ω)〉ω

˛− n0ee0 � ˇ + ˛+n0e−e0 � ˇ + n0 w 〈e−� po E ˇ cos(ω)〉ω

.

(20)

Taking into account Eq. (9), we can rewrite Eqs. (18)–(20) as:

n+(x) = n0 e−e0 � ˇ ns

D(�, E)
, (21)

n−(x) = n0 ee0 � ˇ ns

D(�, E)
, (22)

nw(x) = n0w ns

D(�, E)
sinh(� p0 E ˇ)

� p0 E ˇ
. (23)

where:

D(�, E) = ˛− n0 ee0 � ˇ + ˛+n0 e−e0 � ˇ + n0 w

� p0 E ˇ
sinh(� p0 E ˇ).

(24)

The magnitude of the polarisation in the vicinity of the negatively
charged surface is given by [14,43,45]:

P(x) = nw(x)

(
2 + n2

3

)
p0 L

(
�p0Eˇ

)
. (25)

Combining Eq. (23) and Eq. (25) gives the polarization in the form:

P(x) = p0 n0w ns

(
2 + n2

3

) F
(

�p0Eˇ
)

D(�, E)
, (26)

where the function F(u) is defined as: F(u) = L(u)(sinh u/u). Com-
bining εr(x) = n2 + P/ε0E and Eq. (26) yields the relative (effective)
permittivity:

εr(x) = n2 + n0w ns
p0

ε0

(
2 + n2

3

) F
(

�p0Eˇ
)

D(�, E) E
. (27)

In the limit of vanishing electric field strength (E → 0) and zero
potential (� → 0), the above derived expression for relative per-
mittivity (Eq. (27)) gives the Onsager expression for permittivity
[47].

Using the above expression for εr(x), we can rewrite the Pois-
son’s equation into the form of:

d
dx

[
ε0 εr(x)

d�

dx

]
= 2 e0 nsn0

sinh(e0�ˇ)
D(�, E)

, (28)
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