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Abstract

We propose a new formulation of the statistical multifragmentation model based on the analysis of the
virial expansion for a system of the nuclear fragments of all sizes. The developed model not only allows us
to account for short-range repulsion, but also to calculate the surface free energy which is induced by the
interaction between the fragments. Also we propose a new parameterization for the liquid phase pressure
which allows us to introduce a compressible nuclear liquid into the statistical multifragmentation model.
The resulting model is exactly solvable and has no irregular behavior of the isotherms in the mixed phase
region that is typical for mean-field models. The general conditions for the 1-st and 2-nd (or higher) order
phase transitions are formulated. It is shown that all endpoints of the present model phase diagram are the
tricritical points, if the Fisher exponent τ is in the range 3

2 � τ � 2. The treatment of nuclear liquid com-
pressibility allows us to reduce the tricritical endpoint density of the statistical multifragmentation model to
one third of the normal nuclear density. A specific attention is paid to the fragment size distributions in the
region of a negative surface tension at supercritical temperatures.
© 2014 Elsevier B.V. All rights reserved.
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1. Introduction

More than 30 years the statistical multifragmentation model (SMM) [1] is playing the lead-
ing role in studies of the nuclear multifragmentation reactions [2,3] which, probably, is one of

0375-9474/$ – see front matter © 2014 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.nuclphysa.2013.12.012

http://www.sciencedirect.com
http://dx.doi.org/10.1016/j.nuclphysa.2013.12.012
http://www.elsevier.com/locate/nuclphysa
http://dx.doi.org/10.1016/j.nuclphysa.2013.12.012
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nuclphysa.2013.12.012&domain=pdf


V.V. Sagun et al. / Nuclear Physics A 924 (2014) 24–46 25

the most spectacular phenomena that is available for exploration in nuclear reactions at interme-
diate energies. Additionally, the SMM greatly stimulated the studies of phase transition (PT) in
finite systems [2–5] and investigation of non-homogeneous phases of strongly interacting matter
in astrophysics [6–8] and heavy-ion collisions [9–11].

A simplified version of the SMM without the Coulomb and asymmetry terms was proposed
in [12,13]. Its analytical solution was obtained in [14,15], where an additional parameter, the
Fisher exponent τ , was introduced in the model. The value of the Fisher exponent extracted from
nuclear experiments [16,17] turned out to be τ � 1.8–1.9, i.e. well below the prediction of the
Fisher droplet model (FDM) τF � 2.209 [18,19], but in a good correspondence with the criti-
cal exponent analysis made in [20] for the simplified SMM. This fact initiated new attempts to
analyze the multifragmentation data in order to extract the values of the exponent τ and critical
temperature within the original SMM [21–24] and within its simplified versions [25]. Note that
these results clearly indicate an existence of effective power law in the data which is not postu-
lated in the standard SMM, but is automatically generated in the final distributions of fragments
[21–25]. Also these studies gave a first evidence that the nuclear liquid–gas PT has the tricritical
endpoint rather than the critical one [20]. Finally, it is necessary to stress that the experimental
searches for the signals of nuclear liquid–gas PT led to a tremendous progress in experimental
techniques and theoretical approaches (see e.g. [26–30] and references therein).

Despite the obvious successes of the SMM in describing many sets of experimental data there
are two simple conceptual questions: why does the SMM perfectly work in describing the low
density nuclear vapor that appears at the freeze-out stage, and why does the SMM predict [14,
15] that the critical point of the liquid–gas PT is located at ρ = ρ0 instead of ρ � 1

3ρ0. Here
ρ0 � 0.16 fm3 is the normal nuclear density which is a maximal density of nuclear liquid in
the SMM [14,15]. At first glance the answer on the second question seems to be very trivial:
the SMM considers all nuclear fragments as incompressible droplets. This can be seen from the
eigen volume of the k-nucleon fragment which is Vk = k

ρ0
. Thus, the limiting particle density ρ0

appears in the SMM due to the Van der Waals like treatment of the short range repulsion between
the fragments. However, in this case we really face a difficult problem to get the answer on the
first of the above questions and to explain the reason why the SMM is so good in describing
the experimental data at freeze-out density which is between 1

6 and 1
3 of ρ0. As well known, to

describe the thermodynamics at low densities one has to use the virial expansion and to account
for, at least, the second virial coefficients ajk = 2

3π(Rj + Rk)
3 between all pairs of fragments

of the hard core radii Rj and Rk [31–34]. The real problem, however, is that the SMM employs
not the second virial coefficients which provide the description of low density matter, but uses
the eigen volumes of the k-nucleon fragments Vk = 4

3πR3
k , which, usually, appear in the high

density limit [35,36]! In order to understand why the SMM is successful at low densities, we
have to return to its basic assumptions and find out, how the virial coefficients appear in this
model. In order to demonstrate this idea straightforwardly, we employ the simplified SMM.

The simplified version of the SMM [12,13] which is solved analytically in [14,15] is much
more elaborate than the FDM [18], since in contrast to the latter one, the SMM explicitly contains
the nonzero proper sizes of all fragments and, hence, the liquid phase. However, in the standard
SMM the nuclear liquid is incompressible, that is too rough approximation at higher tempera-
tures. By this reason the critical and tricritical endpoints of the simplified SMM [14,20] appear
at the density of a liquid phase ρ = ρl(T = 0) = ρ0, while in ordinary substances the critical
density is about one third of that one for low temperature liquid phase [31,37,38]. In present pa-
per we modify the simplified SMM to account for the compressibility of nuclear liquid and show
how the equation for the surface tension coefficient induced by interaction between the nuclear
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