

Nuclear Physics A 774 (2006) 461-464

Systematic study of identified particle production in PHENIX

M. Konno^a (for the PHENIX* Collaboration)

^aGraduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan

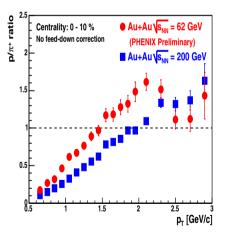
Large enhancement of (anti)protons relative to pions has been observed at intermediate $p_T \sim 2\text{-}5~\text{GeV/c}$ in central Au+Au collisions at RHIC. To investigate the possible source of this baryon enhancement, we performed a systematic study of identified hadron spectra in Au+Au and Cu+Cu collisions at $\sqrt{s_{NN}} = 200~\text{GeV}$, and Au+Au collisions at $\sqrt{s_{NN}} = 62.4~\text{GeV}$. The data set allows us to study the energy dependence and system size dependence of the baryon enhancement. We also compare the nuclear modification factors on hadron production in two different collision systems.

1. INTRODUCTION

One of the most remarkable observations in central heavy ion collisions at RHIC is a large enhancement of baryons and antibaryons at intermediate $p_T \sim 2-5 \text{ GeV/c}$, while neutral pions and inclusive charged hadrons are strongly suppressed compared to p+pcollisions. [1–3]. The (anti)proton to pion ratio is enhanced by almost a factor of 3 when one compares most central Au+Au events to peripheral or p+p events. In this p_T region, fragmentation process dominates the particle production in p+p collisions. It is expected that the fragmentation is independent of the collision system - hence the large baryon fraction observed at RHIC comes as a surprise. This behavior is usually called "baryon anomaly at RHIC". By performing a control experiment - d+Au collisions, in which only cold nuclear matter is present - we found that the suppression of particle yields comes not from initial state interactions, but from final state interactions (i.e. jet quenching) [4]. On the other hand, the observed enhancement is explained several different ways: (1) strong radial flow which pushes the heavier particles to larger p_T [5], (2) recombination of shower quarks with quarks from the thermalized medium [6-8]. To investigate the origin of this anomaly, we use data sets from several RHIC runs, including the most recent data set of Cu+Cu collisions taken in 2005 by the PHENIX experiment. The data set allows us to study the collision energy and system size dependences of hadron production.

2. DATA ANALYSIS

Data presented here includes Au+Au and Cu+Cu collisions at $\sqrt{s_{NN}} = 200$ GeV, and Au+Au collisions at $\sqrt{s_{NN}} = 62.4$ GeV. Events with vertex position along the beam axis within |z| < 30 cm were triggered by the Beam-Beam Counters (BBC) located at


^{*}For the full list of PHENIX authors and acknowledgments, see Appendix 'Collaborations' of this volume.

 $|\eta|=3.0\text{-}3.9$. Using BBC, the triggered events are classified in collision centrality classes. Charged particles are reconstructed at mid-rapidity $|\eta|<0.35$ using a drift chamber and multi-wire proportional chambers with pad readout. Particle identification is based on particle mass calculated from the measured momentum and the velocity obtained from time-of-flight and path length along the trajectory. The measurement uses the time-of-flight detector with a resolution of $\sigma\sim130$ ps. Corrections to the charged particle spectrum for geometrical acceptance, decay in flight, reconstruction efficiency, and momentum resolution are determined using a single-particle GEANT Monte Carlo simulation. Multiplicity-dependent corrections are evaluated by embedding simulated tracks into real events. Any feed-down corrections from weak decays are not applied to these results. The detailed analysis methods are described in [1].

3. RESULTS

3.1. Baryon Enhancement - p/π ratios at $\sqrt{s_{NN}} = 62.4 \text{ GeV}$

To study the excitation function of hadron production at a beam energy between SPS and RHIC, Au+Au data at $\sqrt{s_{NN}} = 62.4$ GeV were taken at RHIC in Run-5 (2005). These lower energy data provide important information on the baryon production and transport at mid-rapidity between SPS and earlier RHIC energies. Figure 1 shows the p/ π^+ and \bar{p}/π^- ratios in central Au+Au collisons at 62.4 GeV and 200 GeV [9]. Compared to the 200 GeV data, the 62.4 GeV data show a slightly larger proton contribution at intermediate p_T , while there is less antiproton contribution. The larger value of p/ π is explained by the larger difference between the slopes of spectra from fragmentation and recombination processes at 62.4 GeV than that at 200 GeV [10].

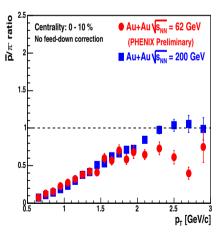


Figure 1. p/π^+ (left) and \overline{p}/π^- (right) ratios in central (0-10%) Au+Au collisions at $\sqrt{s_{NN}} = 62.4$ GeV and 200 GeV. Note that the feed-down corrections from weak decays are not applied.

Download English Version:

https://daneshyari.com/en/article/1838090

Download Persian Version:

https://daneshyari.com/article/1838090

<u>Daneshyari.com</u>