Nuclear Physics A 789 (2007) 125-141 # IBM-1 description of the fission products ^{108,110,112}Ru I. Stefanescu ^{a,g,*}, A. Gelberg ^b, J. Jolie ^b, P. Van Isacker ^c, P. von Brentano ^b, Y.X. Luo ^{d,e}, S.J. Zhu ^{f,d}, J.O. Rasmussen ^e, J.H. Hamilton ^d, A.V. Ramayya ^d, X.L. Che ^f ^a Instituut voor Kern- en Stralingsfysica, K.U. Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium ^b Institut für Kernphysik der Universität zu Köln, 50937 Köln, Germany ^c Grand Accélérateur National d'Ions Lourds, CEA/DSM-CNRS/IN2P3, BP 55027 F-14076 Caen Cedex 5, France ^d Physics Department, Vanderbilt University, Nashville, TN 37235, USA ^e Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA f Department of Physics, Tsinghua University, Beijing 100084, PR China g Horia-Hulubei National Institute for Physics and Nuclear Engineering, PO Box MG-6, Bucharest, Romania Received 12 December 2006; received in revised form 13 March 2007; accepted 16 March 2007 Available online 30 March 2007 #### **Abstract** IBM-1 calculations for the fission products 108,110,112 Ru have been carried out. The even—even isotopes of Ru can be described as transitional nuclei situated between the U(5) (spherical vibrator) and SO(6) (γ -unstable rotor) symmetries of the interacting Boson Model. At first, a Hamiltonian with only one- and two-body terms has been used. Excitation energies and B(E2) ratios of gamma transitions have been calculated. A satisfactory agreement has been obtained, with the exception of the odd—even staggering in the quasi- γ bands of 110,112 Ru. The observed pattern is rather similar to the one for a rigid triaxial rotor. A calculation based on a Hamiltonian with three-body terms was able to remove this discrepancy. The relation between the IBM and the triaxial rotor model was also examined. © 2007 Elsevier B.V. All rights reserved. PACS: 21.10.Ky; 21.10.Re; 21.60.Ew; 21.60.Fw Keywords: Interacting boson model, ^{108,110,112}Ru; Energies, E2 branching ratios E-mail address: irina.stefanescu@fys.kuleuven.be (I. Stefanescu). ^{*} Corresponding author at: Instituut voor Kern- en Stralingsfysica, K.U. Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium. #### 1. Introduction In recent years neutron-rich even—even isotopes of Ru have been studied by gamma-ray spectroscopy. In this work we will concentrate our attention on the heavy fission products 108,110,112 Ru, for which new data are available. In most cases, such nuclei were produced by spontaneous fission, and the gamma-rays were studied by using large Ge-detector arrays [1–3]. Recently, fission products with masses between about 100 and 112 were produced by a 252 Cf source, and studied with the Gammasphere array [4–6]. In the most recent publication from the latter collaboration, Zhu et al. [7], several new excited states and transitions have been reported. Some neutron-rich even—even Ru isotopes were also produced by the β -decay of Tc [8–11]. Recently, 104 Ru was re-investigated by Coulomb excitation [12]. The impressive accumulation of experimental data during the last 5–6 years has created improved conditions for revisiting the description of 108,110,112 Ru by means of nuclear models. In the paper by Stachel et al. [13] the authors proposed to consider the isotopes between 98 Ru and 110 Ru as belonging to a transition from the U(5) to the SO(6) limit of the Interacting Boson Model (IBM) [14]. In geometrical terms this would be equivalent to a transition between a spherical vibrator [15] and a γ -unstable rotor [16]. The authors of [13] used a schematic Hamiltonian, which can describe the main features of the U(5) to SO(6) transition in even–even Ru isotopes. In their conclusion they viewed this simplified treatment only as a guideline. A more detailed approach is necessary for a comparison of the data with the model for each nucleus. Even–even Ru isotopes were studied in [17,18], where the IBM-2 was used. In this variant of the model, separate proton and neutron bosons are considered. The authors focussed their attention on mixed-symmetry states [19–21]. More recently a search for a possible phase transition in these nuclei was carried out in [22]. Again, a schematic Hamiltonian was used to describe the U(5) to SO(6) transition. The use of coherent states [23,24] allowed the authors to keep track of the dependence on deformation of the total energy surface. The authors came to the conclusion that a phase transition takes place at 104 Ru, which can be considered as an example of the E(5) critical symmetry proposed by Iachello [25]. Other models have also been used for the calculation of excitation energies and transition strengths. The rotation–vibration model [4,26] and the generalized collective model [27,28] were applied to $^{108-112}$ Ru. A microscopically based quadrupole Bohr Hamiltonian was applied to 104 Ru [12]. Recently excited states in $^{109-112}$ Ru were populated in a 238 U(α , f) fusion–fission reaction [29]. The bands above the backbending were interpreted with the cranked shell model. The main aim of this work is to describe the most important observables of the heavy 108,110,112 Ru isotopes such as excitation energies, E2 branching ratios and the odd–even staggering in the quasi- γ bands by using the interacting boson model. We will use both the standard IBM-1 Hamiltonian and an extended one, which also comprises a three-body term. We will also discuss the relation between the IBM-1 and the Rigid Triaxial Rotor Model (RTRM). The calculations will be compared to the latest experimental information presented in [7] which includes revisited γ -ray intensities and, for 110,112 Ru, a newly observed band-like structure built on the proposed (4^+_3) state. ### Download English Version: # https://daneshyari.com/en/article/1839026 Download Persian Version: https://daneshyari.com/article/1839026 <u>Daneshyari.com</u>