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Abstract

Virasoro Kac modules were originally introduced indirectly as representations whose characters arise in 
the continuum scaling limits of certain transfer matrices in logarithmic minimal models, described using 
Temperley–Lieb algebras. The lattice transfer operators include seams on the boundary that use Wenzl–
Jones projectors. If the projectors are singular, the original prescription is to select a subspace of the 
Temperley–Lieb modules on which the action of the transfer operators is non-singular. However, this pre-
scription does not, in general, yield representations of the Temperley–Lieb algebras and the Virasoro Kac 
modules have remained largely unidentified. Here, we introduce the appropriate algebraic framework for 
the lattice analysis as a quotient of the one-boundary Temperley–Lieb algebra. The corresponding stan-
dard modules are introduced and examined using invariant bilinear forms and their Gram determinants. The 
structures of the Virasoro Kac modules are inferred from these results and are found to be given by finitely 
generated submodules of Feigin–Fuchs modules. Additional evidence for this identification is obtained by 
comparing the formalism of lattice fusion with the fusion rules of the Virasoro Kac modules. These are ob-
tained, at the character level, in complete generality by applying a Verlinde-like formula and, at the module 
level, in many explicit examples by applying the Nahm–Gaberdiel–Kausch fusion algorithm.
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1. Introduction

The minimal models introduced by Belavin, Polyakov and Zamolodchikov [1] are central to 
conformal field theory [2]. A minimal model is characterised by a pair of co-prime integers, 
1 < p < p′, and is often denoted accordingly by M(p, p′). The corresponding central charge c
and conformal weights �r,s are given by

c = 1 − 6
(p′ − p)2

pp′ , �r,s = (rp′ − sp)2 − (p′ − p)2

4pp′ , (1.1)

where r = 1, 2, . . . , p − 1 and s = 1, 2, . . . , p′ − 1. These weights satisfy �r,s = �p−r,p′−s and 
there is an irreducible Virasoro representation associated with each distinct conformal weight. 
Moreover, these representations are the only indecomposable representations in the model and 
the minimal models are examples of rational conformal field theories.

At criticality, the restricted solid-on-solid models solved by Andrews, Baxter and Forrester 
[3,4] offer lattice realisations of the minimal models. Corresponding to each of the irreducible 
Virasoro representations in a given minimal model, there is a Yang–Baxter integrable boundary 
condition [5–7] for the lattice realisation: In the continuum scaling limit (or scaling limit, for 
short), the eigenvalue spectrum of the corresponding transfer matrix (or of the associated Hamil-
tonian) gives rise to the character of the irreducible representation. In this way, the Hamiltonian 
of the lattice model becomes the first conformal integral of motion I1 = L0 − c

24 .
Logarithmic conformal field theory has its roots in work by Rozansky and Saleur [8] and 

Gurarie [9], but the first thorough analysis of such a theory appeared in a series of papers by 
Gaberdiel and Kausch [10–12] on a theory with central charge c = −2. Their theory is not a 
minimal model, at least not from the perspective of the Virasoro algebra, but it may be regarded 
as minimal with respect to an extended symmetry algebra W1,2 related to that of symplectic 
fermions [13]. The central charge and conformal highest weights of the Virasoro representations 
are nevertheless of the form (1.1), but with p = 1, p′ = 2 and no upper bounds on the Kac labels 
r and s. Subsequently, evidence mounted [14–18] suggesting that every Virasoro minimal model 
can be augmented to a logarithmic conformal field theory of the same central charge. This was 
made concrete almost ten years ago when such logarithmic models were realised algebraically as 
conformal field theories with Wp,p′ symmetry [19] and conjectured to be the scaling limits of a 
series of exactly solvable lattice models LM(p, p′) [20]. In these models, the co-prime integers 
p and p′ satisfy 1 ≤ p < p′, thus covering the value c = −2 (the W1,p′ models were introduced 
as conformal field theories much earlier [21,22]). We emphasise that the present work deals with 
the so-called Virasoro picture and thus ignores possible extensions of the Virasoro algebra such 
as the Wp,p′ algebras underlying the W-extended picture [19,23,24].

As lattice theories, the logarithmic minimal models LM(p, p′) describe non-intersecting, 
densely packed loops on a square lattice. Mathematically, this can be formalised in terms of the 
Temperley–Lieb algebra TLn(β) [25], where β denotes the fugacity of the loops and n is the 
width of the lattice. The models admit infinitely many distinct Yang–Baxter integrable boundary 
conditions, among which the so-called (r, s)-type, or Kac, boundary conditions play a prominent 
role. Matrix realisations of the corresponding transfer operators are well-defined, although their 
construction does not yield representations of the full underlying Temperley–Lieb algebras. It 

http://creativecommons.org/licenses/by/4.0/


Download	English	Version:

https://daneshyari.com/en/article/1839981

Download	Persian	Version:

https://daneshyari.com/article/1839981

Daneshyari.com

https://daneshyari.com/en/article/1839981
https://daneshyari.com/article/1839981
https://daneshyari.com/

