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Abstract

We set up a formalism for calculating transverse-momentum-dependent parton distribution functions 
(TMDs) of a large nucleus using the tools of saturation physics. By generalizing the quasi-classical 
Glauber–Gribov–Mueller/McLerran–Venugopalan approximation to allow for the possibility of spin–orbit 
coupling, we show how any TMD can be calculated in the saturation framework. This can also be applied 
to the TMDs of a proton by modeling it as a large “nucleus.” To illustrate our technique, we calculate the 
quark TMDs of an unpolarized nucleus at large-x: the unpolarized quark distribution and the quark Boer–
Mulders distribution. We observe that spin–orbit coupling leads to mixing between different TMDs of the 
nucleus and of the nucleons. We then consider the evolution of TMDs: at large-x, in the double-logarithmic 
approximation, we obtain the Sudakov form factor. At small-x the evolution of unpolarized-target quark 
TMDs is governed by BK/JIMWLK evolution, while the small-x evolution of polarized-target quark TMDs 
appears to be dominated by the QCD Reggeon.
Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Over the past decade quark and gluon transverse momentum-dependent parton distribu-
tion functions (TMDs) [1,2] have become an integral component of our understanding of the 
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momentum-space structure of the nucleon. At the same time the main principles for calculating 
TMDs in the perturbative QCD framework have remained essentially the same over the years: 
one parameterizes the initial conditions at some initial virtuality Q2 = Q2

0 and then applies the 
Collins–Soper–Sterman (CSS) evolution equation [1] to find the TMDs at all Q2. The initial 
conditions are non-perturbative, and have to be constructed using models of the non-perturbative 
QCD dynamics (see [3] and references therein). Since very little is known about non-perturbative 
effects in QCD, often one uses the same form for the parameterization of the initial conditions for 
several different TMDs, frequently assuming a Gaussian dependence of the TMDs on the parton 
transverse momentum kT [4]. It is clearly desirable to have a better control of our qualitative and 
quantitative understanding of TMDs.

To this end one can employ the recent progress in our understanding of small-x physics and 
parton saturation [5–11] to put constraints on the TMDs and even calculate them in the high-
energy limit. When calculating TMDs one often works either in the s ∼ Q2 � k2

T (large-x) or in 
the s � Q2 � k2

T (small-x) regimes, where s is the center-of-mass energy and x = Q2/(s +Q2)

if one neglects the proton mass. In either case the energy s is large, and the techniques of high-
energy QCD should apply. The degrees of freedom in saturation physics are infinite Wilson lines 
along (almost) light-like paths. The definition of the TMDs involves light-cone Wilson lines as 
well [12,13], although the integration paths are semi-infinite, forming the so-called “light-cone 
staple”. We can see that there are both similarities and differences between saturation physics 
and the physics of TMDs. The interface of these two sub-fields of quantum chromodynamics 
(QCD) has been explored in [14–24].

In the past some success has been achieved in applying saturation physics to study the Sivers 
function [25,26] both in semi-inclusive deep inelastic scattering (SIDIS) and in the Drell–Yan 
process (DY). In [27] the Sivers function was constructed by generalizing the quasi-classical 
Glauber–Gribov–Mueller (GGM) [28]/McLerran–Venugopalan (MV) [29–31] approximation of 
a heavy nucleus with atomic number A � 1. The presence of the atomic number generates a 
resummation parameter α2

s A1/3 [32,33] allowing a systematic resummation of multiple rescat-
terings, which are essential for the Sivers function. This picture can also be applied to the proton 
if one models it as a large “nucleus.” This large-nucleus approximation is known to work well 
in describing the data from deep inelastic scattering (DIS) experiments on a proton at low-x; it 
is therefore possible that it would give a reasonable description for proton TMDs as well. The 
result of [27] was an explicit form of the Sivers function in the s ∼ Q2 � k2

T regime, which 
was different from a simple Gaussian in kT and which can be used as the initial condition for its 
Collins–Soper–Sterman (CSS) evolution [1]. Another important result of [27] was the realization 
that the Sivers function can be produced via two different channels: one is the standard “lens-
ing” mechanism of [34–36] with additional momentum broadening due to multiple rescatterings 
in the nucleus, while the other mechanism was due to the orbital angular momentum (OAM) 
of the nucleus combined with multiple rescatterings. This latter channel has not been reported 
before [27], and it dominates mainly in the regime where multiple rescatterings are important, 
or, more precisely, for kT � Qs/

√
αs , where Qs is the saturation scale of the nucleus. It appears 

that applications of saturation physics to the calculation of TMDs may lead to qualitatively new 
channels of generating the relevant observables.

The aim of this work is twofold. First of all we want to generalize the approach of [27] to 
the calculation of any TMD in the quasi-classical approximation and for s ∼ Q2 � k2

T . This is 
accomplished in Sec. 2 for the case of an unpolarized nucleus; the generalization to the polar-
ized case is straightforward and is left for future work. The quasi-classical TMD calculation is 
accomplished using the factorization given in Eq. (18) (and, in more detail in Eq. (39)), which 
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