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1. Introduction

A common approach to ensure high energy density and
chemical reversibility in rechargeable batteries is to employ
solid-state materials amiable to alkali ion insertion reactions [1-3].
The insertion reaction however has several drawbacks, such as, the
transport of ions inside the solid is slow compared to transport in
liquid electrolytes. To overcome this problem, the electrodes
employed in insertion batteries consist of active material in micron
to nanometer sized particle form mixed with additives like
polymeric binder and carbon. This solid matrix is porous, so that
the liquid electrolyte may penetrate deep inside the electrode.
Consequently, the electrode has considerable structural complexi-
ty, which makes analyzing performance challenging. E.g. a
common problem is to identify if the performance is limited by
transport in the liquid electrolyte part of electrode or by transport
in the active material particles [4].

The problem of charge transport and electrochemical perfor-
mance of composite electrodes has previously been examined
theoretically. As such, empirical methods based on a careful
comparison of the discharge characteristics of several materials
have lead to models with analytical solutions [5-7]. They have the
advantage of simplicity, with the trade-off of limited validity range.
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More complex and accurate models, able to reproduce entire
discharge curves have also been developed [8-13]. These necessi-
tate an expertise in numerical simulation and more importantly,
they require the knowledge of many parameters characterizing the
system under study, including electronic and ionic conductivities,
size of the particles, porosity etc. Consequently extensive
characterization of the electrode and its components is required
to employ these models. In the present study the simplicity of the
empirical methods and the accuracy of the numerical studies are
combined to derive a simple technique for identification of the
factor limiting the performances of a positive electrode. In
addition, the analysis allows for the evaluation of the associated
transport parameters.

2. Experimental

2g of LiFePOg4:poly(3,4-ethylenedioxythiophene) composite,
pedot-LiFePO, hereafter, prepared according to ref. [14] was
mechanically mixed with 4g of a solution of 3% (w/w) PVDF
(Kynar® KF Polymer W#1100) in N-methylpyrrolidone (Aldrich).
The suspension was coated onto carbon coated Al foil (Exopack
#2651) with a micrometer adjustable film applicator (MTI corp.).
The applicator was adjusted to various thicknesses to yield
coatings 1 to 4. The coatings where subsequently dried at 60°C
for three hours in ambient air and under vacuum overnight. After
this drying the thickness of the active materials was measured
using a micrometric head (Mitutoyo). The electrodes were
transferred to an Argon atmosphere glove box (H,O < 1ppm, O,
< 1ppm) for coin cell assembly. An 1M LiPFg in a 1:1 ethylene
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carbonate and dimethyl carbonate (Novolyte Technologies) solu-
tion served as electrolyte, while the anode and separator consisted
of metallic lithium (99.9%, 0.75 mm thick and 19 mm wide; Alfa
Aesar) and Celgard 2500 membranes, respectively. All batteries
were cycled between 2.2 and 4V for five cycles at C/5, for
stabilization using an 8Channels Battery Analyzer (MTI corp.
0.002-1mA), prior to the cycling at different C-Rates (2.2-4V)
using a Bio-Logic VMP3 multipotentiostat. Degree of Discharge
(DoD) refers to the capacity relative to the maximum capacity at
the lowest measured rates. Approximate particle size was
determined by examining transmission electron micrographs
obtained from a Jeol JEM-2100F TEM operating at 200 kV.

3. Calculations

The partial differential equations systems (see supporting
information) were solved numerically using the finite elements
method implemented in the commercially available software
Comsol version 3.5a. The maximal size of the mesh was set to
0.001 and 0.01 for 1D and 2D domains, respectively, and the
relative tolerance was fixed at 10~%, Numerical resolutions lasted
few seconds using Quad CPU 2.5 GHz Intel Processor with 8 GB of
RAM.

4. Results and discussion

The discharge curves measured for four different electrode
coatings based on the same active material, i.e. LiFePO, with
identical chemical composition are presented in Fig. 1. They
however differ by their porosity and thickness as indicated in
Table 1.

The current density is referenced to the C-rate,i.e. the inverse of
the discharge time (inh) required to extract the full theoretical
capacity of the system. As apparent from Fig. 1, for a given C-rate
the Degree of Discharge (DoD), i.e. the accessible fraction of the
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maximal capacity, strongly depends on the coatings physical
parameters, e.g. at the 10C-rate the capacity varies from 40 mAh/g
for the coating 1 to less than 5 mAh/g for the coating 4. Since the
composition is the same for the four coatings, this is a clear
indication that the charge transport in the electrode structure,
which here includes the electrolyte, strongly influences the
performance.

To what extend the electrode structure is limiting compared to
the active material is however difficult to identify from the data
presented Fig. 1. In contrast, we have found empirically that
plotting 1/DoD as a function of C-rate leads to a linear behavior at
low rates for electrodes expected to be limited by the transport in
the active particle (high porosity, low thickness) (Fig. 2).

Our analysis was extended to insertion battery system data
from the recent literature selected at random (see supporting
information) [15-17]. Surprisingly, the same linear behavior is
found at low C-rates over a wide range of systems, provided that
the voltage cut-off window is sufficiently large to provide the sharp
decrease of potential at the end of charge, as is the case in Fig. 1.

To explore this behavior in depth, numerical simulations were
employed. Using the same approach as adopted by Newman et al.,
we considered the electrode as the macro-homogeneous super-
position of two media transporting the electronic and ionic
charges, in addition to the transport of inserted ions inside the
active material particles [18-20]. The corresponding equation
system is presented in the supporting information section.
Importantly, while it has been shown previously that the
microscopic mechanism for lithium uptake and release is
remarkably complex for the Li;_\FePO, system [21-28], we here
use a spherical diffusion model to describe lithium transport, as
recent data suggests that this yield correct kinetic predictions
within the experimental error for the oxidation process [29]. The
numerical investigation of a wide range of model parameter
combinations, followed by the careful analysis of the resulting
discharge curves lead to the conclusion, that two unique sets of
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Fig. 1. Experimental discharge curves for different C-rates. (For thickness and porosity see Table 1. Chemical composition: 80-85 wt-% LiFePO4, 10-13wt% poly(3,4-

ethylenedioxythiophene) and polyvinylidene difluoride.
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