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Abstract

The random-cluster model, a correlated bond percolation model, unifies a range of important models 
of statistical mechanics in one description, including independent bond percolation, the Potts model and 
uniform spanning trees. By introducing a classification of edges based on their relevance to the connectivity 
we study the stability of clusters in this model. We prove several exact relations for general graphs that allow 
us to derive unambiguously the finite-size scaling behavior of the density of bridges and non-bridges. For 
percolation, we are also able to characterize the point for which clusters become maximally fragile and show 
that it is connected to the concept of the bridge load. Combining our exact treatment with further results 
from conformal field theory, we uncover a surprising behavior of the (normalized) variance of the number of 
(non-)bridges, showing that it diverges in two dimensions below the value 4 cos2 (π/

√
3) = 0.2315891 · · ·

of the cluster coupling q. Finally, we show that a partial or complete pruning of bridges from clusters enables 
estimates of the backbone fractal dimension that are much less encumbered by finite-size corrections than 
more conventional approaches.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Percolation is probably the most widely discussed and arguably the simplest model of critical 
phenomena. Due to a combination of conceptual simplicity and wide applicability which is a 
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signature of a problem of very general interest, its many incarnations including bond and site 
percolation on a lattice as well as continuum and non-equilibrium, directed variants, have been 
the subject of thousands of studies [1]. In statistical physics and mathematics alike, the quest to 
understand aspects of the percolation problem has led to developments of powerful and beau-
tiful new techniques [2,3]. While the problem is well defined and interesting for any graph or 
lattice, both finite and infinite, the understanding of non-trivial cases is most advanced in two 
dimensions. There, the scaling limit of critical percolation can be related to the Coulomb gas [4]
and conformal field theory [5], leading to exact results for most critical exponents and certain 
correlation functions. More recently, a rigorous approach to conformal field theory was pio-
neered by Schramm who used a mapping introduced by Löwner to construct a way of generating 
conformally invariant fractal random curves, the Stochastic (or Schramm) Löwner Evolutions 
(SLEs) [6], for which a range of properties, including fractal dimensions, can be calculated ex-
actly. In this context, Smirnov and co-workers used the concept of discrete analyticity to establish 
rigorously that the scaling limits of critical percolation [7,8] and the Ising model [9] on the trian-
gular lattice are indeed conformally invariant, and cluster boundaries in these models converge 
to certain classes of SLE traces.

The random-cluster (RC) model was suggested by Fortuin and Kasteleyn as a natural exten-
sion of the (bond) percolation problem, noting that there was a class of models fulfilling the 
series and parallel laws of electrical circuits that also included the Ising model [10]. Given a 
graph G = (V , E), it assigns to a spanning subgraph (V , A ⊆ E) a probability mass (in the fol-
lowing also referred to as RC measure) [11]

Pp,q,G[A] = p|A|(1 − p)|E|−|A|qK(A)

ZRC(p, q,G)
, A ∈ �G, (1.1)

where K(A) is the number of components and |A| the number of edges in A. The quantity 
ZRC(p, q, G) is the partition function of the RC model, corresponding to the sum of unnor-
malized weights, and �G constitutes the set of all spanning subgraphs or configurations, i.e., 
�G = {A : A ⊆ E}. Edges that are in A are called open and those in E \ A closed. The presence 
of the cluster-weight factor qK(A) distinguishes (1.1) from the percolation problem and prevents 
Pp,q,G[A] from being a Bernoulli product measure; only for q → 1, where the model reduces to 
the percolation problem and hence edges become independent, this property is restored. Although 
the cluster weight q can be any non-negative real number, integer values of q are particular in 
that for them the partition function is very closely related to that of the q-state Potts model [12]
(see Eq. (2.3) below). For lattice graphs in at least two dimensions, the model undergoes a per-
colation phase transition at a critical value pc(q) of the bond probability where, for sufficiently 
large q , the transition becomes discontinuous [11]. On the square lattice, self-duality allows to 
deduce the exact transition point pc(q) = psd(q) = √

q/(1 + √
q) [13], and the location of the 

tricritical point is known to be qc = 4, beyond which the transition becomes of first order [14].
The crucial importance of the RC description for the understanding of critical phenomena is 

through its expression in purely geometrical terms. Hence understanding the geometric structure 
of the (correlated) percolation problem (1.1) provides a geometric route to the understanding 
of the thermal phase transition of the Potts model. Correspondingly, significant effort has been 
devoted in particular to investigations of the structure of the incipient percolating cluster. While 
initially it was assumed that it was a network of nodes connected by essentially one-dimensional 
links, results regarding the conductivity of the critical cluster implied that, instead, the structure 
is better described by the more elaborate ‘links–nodes–blobs’ picture [15]. If one fixes two dis-
tant points A and B on the cluster, those bonds that have independent, non-intersecting paths to 
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