

Available online at www.sciencedirect.com

ScienceDirect

Nuclear Physics B 905 (2016) 264-292

www.elsevier.com/locate/nuclphysb

Supergravity background of λ -deformed model for $AdS_2 \times S^2$ supercoset

R. Borsato*, A.A. Tseytlin¹, L. Wulff

 $The \ Blackett \ Laboratory, \ Imperial \ College, \ London \ SW7 \ 2AZ, \ UK$

Received 4 February 2016; accepted 17 February 2016

Available online 23 February 2016

Editor: Leonardo Rastelli

Abstract

Starting with the \widehat{F}/G supercoset model corresponding to the $AdS_n \times S^n$ superstring one can define the λ -model of arXiv:1409.1538 either as a deformation of the \widehat{F}/\widehat{F} gauged WZW model or as an integrable one-parameter generalisation of the non-abelian T-dual of the $AdS_n \times S^n$ superstring sigma model with respect to the whole supergroup \widehat{F} . Here we consider the case of n=2 and find the explicit form of the 4d target space background for the λ -model for the $PSU(1,1|2)/SO(1,1)\times SO(2)$ supercoset. We show that this background represents a solution of type IIB 10d supergravity compactified on a 6-torus with only metric, dilaton Φ and the RR 5-form (represented by a 2-form F in 4d) being non-trivial. This implies that the λ -model is Weyl invariant at the quantum level and thus defines a consistent superstring sigma model. The supergravity solution we find is different from the one in arXiv:1410.1886 which should correspond to a version of the λ -model where only the bosonic subgroup of \widehat{F} is gauged. Still, the two solutions have equivalent scaling limit of arXiv:1504.07213 leading to the isometric background for the metric and $e^{\Phi}F$ which is related to the η -deformed $AdS_2 \times S^2$ sigma model of arXiv:1309.5850. Similar results are expected in the $AdS_3 \times S^3$ and $AdS_5 \times S^5$ cases.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP³.

E-mail addresses: r.borsato@imperial.ac.uk (R. Borsato), tseytlin@imperial.ac.uk (A.A. Tseytlin),

1.wulff@imperial.ac.uk (L. Wulff).

^{*} Corresponding author.

Also at Lebedev Institute, Moscow.

1. Introduction

There are two special integrable models that are closely associated with the superstring sigma model on $AdS_n \times S^n$. One is the η -model [1] – a particular integrable deformation of the $AdS_n \times S^n$ supercoset model generalising the bosonic Yang–Baxter sigma model of [2]. The other one is the λ -model [3,4] generalising the bosonic model of [5] (see also [6]). The λ -model is based on the \widehat{F}/\widehat{F} gauged WZW model closely related to the $AdS_n \times S^n$ supercoset and may be interpreted as an integrable deformation of the non-abelian T-dual of the $AdS_n \times S^n$ supercoset action.

While for the η -model the corresponding target space background was found in [7–9] (but turns out not to be a supergravity solution [18]), in the case of the λ -model the GS sigma model action was so far not determined directly apart from the metric [11,12] and the dilaton [4,13]. Our aim below will be to find the full λ -model background (metric, dilaton *and* the RR field strength) from the λ -model action and also as a solution of the type II supergravity equations. We shall consider the simplest example of the $AdS_2 \times S^2$ model. The resulting background differs from the supergravity solution based on the metric and dilaton of the bosonic model that was found in [11].

Let us start with a brief review of the λ -model [4] (see also [13]). The λ -model may be interpreted as a unique integrable deformation of the first-order action that interpolates between the supercoset $AdS_n \times S^n$ superstring model and its non-abelian T-dual with respect to the full supergroup symmetry. In general, one may consider a model based on the supercoset $\frac{\widehat{F}}{G_1 \times G_2} \supset \frac{F_1}{G_1} \times \frac{F_2}{G_2}$, where \widehat{F} is a supergroup (e.g. PSU(2, 2|4) in the $AdS_5 \times S^5$ case or PSU(1, 1|2) in the $AdS_2 \times S^2$ case) and F_i and G_i are bosonic subgroups. The λ -model is defined by the action

$$\hat{I}_{k,\lambda}(f,A) = \frac{k}{4\pi} \left(\int d^2x \, \text{STr} \left[\frac{1}{2} f^{-1} \partial_+ f f^{-1} \partial_- f + A_+ \partial_- f f^{-1} - A_- f^{-1} \partial_+ f \right. \right. \\ \left. - f^{-1} A_+ f A_- + A_+ A_- \right] - \frac{1}{3} \int d^3x \, \epsilon^{abc} \, \text{STr} \left[f^{-1} \partial_a f f^{-1} \partial_b f f^{-1} \partial_c f \right] \\ \left. + (\lambda^{-2} - 1) \int d^2x \, \, \text{STr} \left[A_+ P_\lambda A_- \right] \right), \tag{1.1}$$

where $f \in \widehat{F}$, $A_{\pm} \in \widehat{\mathfrak{f}} = \operatorname{alg}(\widehat{F})$ and P_{λ} is a combination of \mathbb{Z}_4 projectors²

$$P_{\lambda} = P^{(2)} + \frac{1}{\lambda^{-1} + 1} (P^{(1)} - \lambda P^{(3)}). \tag{1.2}$$

All but the last term in (1.1) correspond to the \widehat{F}/\widehat{F} gauged WZW model with integer coupling (level) k and λ is a "deformation" parameter. This action has no global symmetry but there is a local fermionic symmetry and a $G_1 \times G_2$ gauge symmetry which will be fixed by a condition on f after integrating out the gauge fields.

The direct limit $\lambda \to 1$ for fixed k leaves one with \widehat{F}/\widehat{F} gauged WZW model. One can also consider another special limit of $\lambda \to 1$ combined with sending $k \to \infty$ and scaling the supergroup field $f \to 1$ as in [5]

$$f = \exp(-\frac{4\pi}{k}v) = 1 - \frac{4\pi}{k}v + \mathcal{O}(k^{-2}), \quad \lambda = 1 - \frac{\pi}{k}h + \mathcal{O}(k^{-2}), \quad k \to \infty,$$
 (1.3)

where $v \in \hat{f}$ and h are kept fixed. This leads to the following action

Equivalently, $(\lambda^{-2} - 1)A_+ P_{\lambda} A_- = A_+ (\Omega - 1)A_-$, where $\Omega = P^{(0)} + \lambda^{-2} P^{(2)} + \lambda^{-1} P^{(1)} + \lambda P^{(3)}$.

Download English Version:

https://daneshyari.com/en/article/1840331

Download Persian Version:

https://daneshyari.com/article/1840331

<u>Daneshyari.com</u>