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Abstract

Integration by parts identities (IBPs) can be used to express large numbers of apparently different 
d-dimensional Feynman Integrals in terms of a small subset of so-called master integrals (MIs). Using 
the IBPs one can moreover show that the MIs fulfil linear systems of coupled differential equations in the 
external invariants. With the increase in number of loops and external legs, one is left in general with an 
increasing number of MIs and consequently also with an increasing number of coupled differential equa-
tions, which can turn out to be very difficult to solve. In this paper we show how studying the IBPs in fixed 
integer numbers of dimension d = n with n ∈ N one can extract the information useful to determine a new 
basis of MIs, whose differential equations decouple as d → n and can therefore be more easily solved as 
Laurent expansion in (d − n).
© 2015 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Dimensionally regularised [1–3] Feynman integrals fulfil different identities, among which the 
most notable ones are the so-called integration by parts identities (IBPs) [4,5]. Given a family 
of Feynman integrals, the IBPs can be used to write down a large system of linear equations 
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with rational coefficients, which contain the Feynman integrals of that family as unknowns. By 
solving algebraically the system a large number of apparently different Feynman integrals can 
be expressed in terms of a much smaller basis of independent integrals dubbed master integrals 
(MIs). In realistic applications the number of such equations can grow very fast, requiring the 
use of computer algebra in order to handle the complexity of the resulting expressions. There are 
different public and private implementations which allow to perform the reduction to MIs in a 
completely automated way [6–9] based on the so-called Laporta algorithm [10,11].

The IBPs can be used to prove that dimensionally regularised Feynman integrals fulfil linear 
systems of first order differential equations in the external invariants [12–16]. A thorough review 
of the method can be found in [17]. Considering a Feynman graph which is reduced to N inde-
pendent MIs, by direct use of the IBPs one can derive a system of N coupled linear first order 
differential equations for the latter, which can be rephrased as an N -th order differential equa-
tion for any of the MIs. Supplemented with N independent boundary conditions, the system of 
differential equations contains all information needed for numerical or analytical calculations of 
the MIs. Indeed, in the general case, the analytical solution of an N -th order differential equation 
is a very non-trivial mathematical problem.

It has been observed that, in many cases of practical interest, a substantial simplification of the 
problem occurs when studying the behaviour of the system of differential equations as the space–
time dimension parameter d approaches 4, which is also the physically relevant case. Usually we 
are indeed not interested in an exact solution for the MIs as functions of d , but instead in the co-
efficients of their Laurent expansion for d ≈ 4. In [18,19], and in many subsequent applications 
of the differential equation method, it was shown that it is often possible to choose a basis of MIs 
such that the differential equations take a simpler triangular form in the limit d → 4. If this is 
possible, the problem of integrating the system of differential equations simplifies substantially, 
reducing de facto, at every order in (d − 4), to N subsequent integrations by quadrature. Experi-
ence showed that, whenever such a form is achievable, the differential equations can be integrated 
in terms of a particular class of special functions, the multiple polylogarithms (MPLs) [18,20,
21]. The latter have been studied extensively by both mathematicians and physicists and routines 
for their fast and precise numerical evaluation are available since some time [22–24]. Disclosing 
their algebraic properties allowed furthermore the development of very powerful tools for the 
analytical manipulations of these functions [25–27].

More recently it has been shown [28–30] that in many of these cases a basis of MIs can be 
found, such that the system of differential equations takes a particularly simple form, commonly 
referred to as canonical form. The system is said to be in canonical form if the regularisation 
parameter d can be completely factorised from the kinematics, appearing as an explicit (d − 4)

factor in front of the matrix of the system. In addition, the coefficients of the matrix must be total 
differentials of logarithms of functions of the external invariants (i.e. they are said to be in d-log 
form). A canonical basis is particularly convenient as it allows a straightforward integration as 
series expansion in (d − 4) and, due to the d-log form of the coefficients, it integrates directly 
to MPLs of uniform transcendental weight. Criteria for the construction of candidate canonical 
integrals have been presented in [29] and developed in detail, for example, in [31]. In the special 
cases in which the differential equations depend only linearly on the dimensions d , the Magnus 
algorithm can be used to perform a rotation of the system to a canonical form [32]. For a recent 
application of the algorithm see [33]. A completely different approach based on Moser algo-
rithm [34] has been developed for the univariate case in [35] and discussed also independently 
in [36]. Another interesting approach is based on the properties of higher order differential equa-
tions fulfilled by the individual master integrals [37]. In spite of all this impressive progress, 
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