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Abstract
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U(1)3
is specified by a choice of integrable complex structure on the target space. We describe the classical solu-
tions of the model for the case when the worldsheet is a sphere cpl.
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We study a o-model with target space the flag manifold and a nonzero Kalb—Ramond field, which

In his seminal paper [ 1] Pohlmeyer discovered that the o-model with target space S2 is clas-
sically integrable. He showed that this can be related to the fact that the equations of motion
(e.o.m.) of the model are equivalent to the flatness of a one-parametric family of connections.
Soon afterwards it was realized that analogous properties are shared by o-models with sym-
metric target spaces [2]. The case of non-symmetric target spaces, however, resisted analysis
by these methods. In [3] the author proposed a model with a homogeneous but not symmet-
ric target space, with the property that its e.o.m. may be rewritten as a flatness condition for a
one-parametric family of connections.

In this paper we will solve the e.o.m. of the o-model proposed in [3] (reviewed in Sec. 2) for
the case when the worldsheet .# is a sphere CP!. The target space of the model is the manifold
of full flags in €3, which we will denote by F3. It can be viewed as the space of ordered triples
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of orthogonal lines in C? passing through the origin, and is also representable as a quotient
space:
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U3

The flag manifold /3 may be parametrized by the orthonormalized vectors u; (u; o it; = §;;),
modulo phase rotations u; — ¢'® u;. Each of these vectors defines a point in projective
space CIPQ, allowing to construct three natural forgetful maps {r7; : 73 — (D]Pz, i=1,2,3}
by the formula m; (41, u2, u3) = u;. For this reason the properties of the flag manifold are
tightly related to the properties of the underlying CIP?’s. As we shall see, solutions to the
flag o-model e.o.m. are to a large extent expressible through the solutions of the CIP? model.
Due to this, and to introduce the notation, we begin by defining the o-model with target
space CIP2.
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1. The CP? o-model

We will be thinking of CIP? as the quotient CIP? = (C° — {0})/C*. Amap v: .# — CIP?
from a Riemann surface .# can be described by a vector-valued function v(z, 7) € (3, where
Z, 7 are coordinates on the worldsheet .# . We may assume that the vector v is in fact normalized,

3
thatis v € §° c C3: > v |2 := v ov = 1, and henceforth we will use this normalization. This is
i=1
a partial gauge for the gauge group C*, which breaks it down to U (1).
Introduce the covariant derivative

DPwi=dw gy - Fodw,  i=(z3) @)

where ¢, is the U (1)-charge of w, normalized so that ¢, = 1. In most of the applications of
(2) below w is a vector obtained by applying covariant derivatives to the basic map v or its
conjugate v. For example, w € {v, ng)v, D;v)v, ng)ng)v, ...}, in which case g, =1, or w €
{0, ng)ﬁ, D;U)f), ng) D;U)ﬁ, ...}, in which case ¢, = —1. When this does not lead to confusion,
we will sometimes simply write D, in place of ng), D: for D;v).
The covariant derivative has the Leibniz property: Dl.(”) (a-b)= Dl.(v) (a)-b+a- D,.(v) (b). The
commutator of covariant derivatives produces the pull-back of the Fubini—Study form:
DY, DP1=DV 50 DWy— DWio DMy 3)
z 7z 17z z b4 b4 '

The action of the CP? o-model (with zero 6-term) is:
_ [ . 2 2
S_/ EdzAdz(nDzvn + 1 Dzv|1%) 4)

M

The equation of motion following from this action reads
(v)
D; Dg”)v =av, (%)

where « is a scalar function. Multiplying this equation by v and using the Leibniz property
of the covariant derivative together with the identity v o Dz(v)v = 0 (which follows from the
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