

Available online at www.sciencedirect.com

ScienceDirect

Nuclear Physics B 902 (2016) 292-301

www.elsevier.com/locate/nuclphysb

Classical solutions of a flag manifold σ -model

Dmitri Bykov a,b,*

Editor: Hubert Saleur

Abstract

We study a σ -model with target space the flag manifold $\frac{U(3)}{U(1)^3}$ and a nonzero Kalb–Ramond field, which is specified by a choice of integrable complex structure on the target space. We describe the classical solutions of the model for the case when the worldsheet is a sphere \mathbb{CP}^1 .

© 2015 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP³.

In his seminal paper [1] Pohlmeyer discovered that the σ -model with target space S^2 is classically integrable. He showed that this can be related to the fact that the equations of motion (e.o.m.) of the model are equivalent to the flatness of a one-parametric family of connections. Soon afterwards it was realized that analogous properties are shared by σ -models with symmetric target spaces [2]. The case of non-symmetric target spaces, however, resisted analysis by these methods. In [3] the author proposed a model with a homogeneous but not symmetric target space, with the property that its e.o.m. may be rewritten as a flatness condition for a one-parametric family of connections.

In this paper we will solve the e.o.m. of the σ -model proposed in [3] (reviewed in Sec. 2) for the case when the worldsheet \mathcal{M} is a sphere \mathbb{CP}^1 . The target space of the model is the manifold of full flags in \mathbb{C}^3 , which we will denote by \mathcal{F}_3 . It can be viewed as the space of ordered triples

E-mail addresses: dmitri.bykov@aei.mpg.de, dbykov@mi.ras.ru.

^{*} Correspondence to: Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany.

of orthogonal lines in \mathbb{C}^3 passing through the origin, and is also representable as a quotient space:

$$\mathcal{F}_3 = \frac{U(3)}{U(1)^3} \,. \tag{1}$$

The flag manifold \mathcal{F}_3 may be parametrized by the orthonormalized vectors u_i ($u_i \circ \bar{u}_j = \delta_{ij}$), modulo phase rotations $u_k \to e^{i\alpha_k} u_k$. Each of these vectors defines a point in projective space \mathbb{CP}^2 , allowing to construct three natural forgetful maps $\{\pi_i : \mathcal{F}_3 \to \mathbb{CP}^2, i = 1, 2, 3\}$ by the formula $\pi_i(u_1, u_2, u_3) = u_i$. For this reason the properties of the flag manifold are tightly related to the properties of the underlying \mathbb{CP}^2 's. As we shall see, solutions to the flag σ -model e.o.m. are to a large extent expressible through the solutions of the \mathbb{CP}^2 model. Due to this, and to introduce the notation, we begin by defining the σ -model with target space \mathbb{CP}^2 .

1. The \mathbb{CP}^2 σ -model

We will be thinking of \mathbb{CP}^2 as the quotient $\mathbb{CP}^2 = (\mathbb{C}^3 - \{0\})/\mathbb{C}^*$. A map $v: \mathscr{M} \to \mathbb{CP}^2$ from a Riemann surface \mathscr{M} can be described by a vector-valued function $v(z,\bar{z}) \in \mathbb{C}^3$, where z,\bar{z} are coordinates on the worldsheet \mathscr{M} . We may assume that the vector v is in fact normalized, that is $v \in S^5 \subset \mathbb{C}^3$: $\sum_{i=1}^3 |v_i|^2 := \bar{v} \circ v = 1$, and henceforth we will use this normalization. This is a partial gauge for the gauge group \mathbb{C}^* , which breaks it down to U(1).

Introduce the covariant derivative

$$D_i^{(v)}w := \partial_i w - q_w \cdot (\bar{v} \circ \partial_i v) w, \qquad i = \{z, \bar{z}\}$$
 (2)

where q_w is the U(1)-charge of w, normalized so that $q_v=1$. In most of the applications of (2) below w is a vector obtained by applying covariant derivatives to the basic map v or its conjugate \bar{v} . For example, $w \in \{v, D_z^{(v)}v, D_{\bar{z}}^{(v)}v, D_z^{(v)}D_{\bar{z}}^{(v)}v, \ldots\}$, in which case $q_w=1$, or $w \in \{\bar{v}, D_z^{(v)}\bar{v}, D_{\bar{z}}^{(v)}\bar{v}, D_z^{(v)}D_{\bar{z}}^{(v)}\bar{v}, \ldots\}$, in which case $q_w=-1$. When this does not lead to confusion, we will sometimes simply write D_z in place of $D_z^{(v)}$, $D_{\bar{z}}$ for $D_{\bar{z}}^{(v)}$.

The covariant derivative has the Leibniz property: $D_i^{(v)}(a \cdot b) = D_i^{(v)}(a) \cdot b + a \cdot D_i^{(v)}(b)$. The commutator of covariant derivatives produces the pull-back of the Fubini–Study form:

$$[D_z^{(v)}, D_{\bar{z}}^{(v)}] = D_{\bar{z}}^{(v)} \bar{v} \circ D_z^{(v)} v - D_z^{(v)} \bar{v} \circ D_{\bar{z}}^{(v)} v.$$
(3)

The action of the \mathbb{CP}^2 σ -model (with zero θ -term) is:

$$S = \int_{\mathcal{M}} \frac{i}{2} dz \wedge d\bar{z} \left(\|D_z v\|^2 + \|D_{\bar{z}} v\|^2 \right)$$
 (4)

The equation of motion following from this action reads

$$D_{\bar{z}}^{(v)} D_{z}^{(v)} v = \alpha v, \tag{5}$$

where α is a scalar function. Multiplying this equation by \bar{v} and using the Leibniz property of the covariant derivative together with the identity $\bar{v} \circ D_z^{(v)} v = 0$ (which follows from the

Download English Version:

https://daneshyari.com/en/article/1840402

Download Persian Version:

https://daneshyari.com/article/1840402

<u>Daneshyari.com</u>