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Abstract

We study a σ -model with target space the flag manifold U(3)

U(1)3 and a nonzero Kalb–Ramond field, which 
is specified by a choice of integrable complex structure on the target space. We describe the classical solu-
tions of the model for the case when the worldsheet is a sphere CP1.
© 2015 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

In his seminal paper [1] Pohlmeyer discovered that the σ -model with target space S2 is clas-
sically integrable. He showed that this can be related to the fact that the equations of motion 
(e.o.m.) of the model are equivalent to the flatness of a one-parametric family of connections. 
Soon afterwards it was realized that analogous properties are shared by σ -models with sym-
metric target spaces [2]. The case of non-symmetric target spaces, however, resisted analysis 
by these methods. In [3] the author proposed a model with a homogeneous but not symmet-
ric target space, with the property that its e.o.m. may be rewritten as a flatness condition for a 
one-parametric family of connections.

In this paper we will solve the e.o.m. of the σ -model proposed in [3] (reviewed in Sec. 2) for 
the case when the worldsheet M is a sphere CP1. The target space of the model is the manifold 
of full flags in C3, which we will denote by F3. It can be viewed as the space of ordered triples 

* Correspondence to: Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, Am Mühlenberg 1, 
D-14476 Potsdam-Golm, Germany.

E-mail addresses: dmitri.bykov@aei.mpg.de, dbykov@mi.ras.ru.

http://dx.doi.org/10.1016/j.nuclphysb.2015.11.015
0550-3213/© 2015 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

http://www.sciencedirect.com
http://dx.doi.org/10.1016/j.nuclphysb.2015.11.015
http://www.elsevier.com/locate/nuclphysb
http://creativecommons.org/licenses/by/4.0/
mailto:dmitri.bykov@aei.mpg.de
mailto:dbykov@mi.ras.ru
http://dx.doi.org/10.1016/j.nuclphysb.2015.11.015
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nuclphysb.2015.11.015&domain=pdf


D. Bykov / Nuclear Physics B 902 (2016) 292–301 293

of orthogonal lines in C3 passing through the origin, and is also representable as a quotient 
space:

F3 = U(3)

U(1)3
. (1)

The flag manifold F3 may be parametrized by the orthonormalized vectors ui (ui ◦ ūj = δij ), 
modulo phase rotations uk → eiαk uk . Each of these vectors defines a point in projective 
space CP2, allowing to construct three natural forgetful maps {πi : F3 → CP2, i = 1, 2, 3}
by the formula πi(u1, u2, u3) = ui . For this reason the properties of the flag manifold are 
tightly related to the properties of the underlying CP2’s. As we shall see, solutions to the 
flag σ -model e.o.m. are to a large extent expressible through the solutions of the CP2 model. 
Due to this, and to introduce the notation, we begin by defining the σ -model with target 
space CP2.

1. The CP2 σ -model

We will be thinking of CP2 as the quotient CP2 = (C3 − {0})/C∗. A map v : M → CP2

from a Riemann surface M can be described by a vector-valued function v(z, ̄z) ∈ C3, where 
z, ̄z are coordinates on the worldsheet M . We may assume that the vector v is in fact normalized, 

that is v ∈ S5 ⊂C3: 
3∑

i=1
|vi |2 := v̄ ◦ v = 1, and henceforth we will use this normalization. This is 

a partial gauge for the gauge group C∗, which breaks it down to U(1).
Introduce the covariant derivative

D
(v)
i w := ∂iw − qw · (v̄ ◦ ∂iv)w , i = {z, z̄} (2)

where qw is the U(1)-charge of w, normalized so that qv = 1. In most of the applications of 
(2) below w is a vector obtained by applying covariant derivatives to the basic map v or its 
conjugate v̄. For example, w ∈ {v, D(v)

z v, D(v)
z̄ v, D(v)

z D
(v)
z̄ v, . . .}, in which case qw = 1, or w ∈

{v̄, D(v)
z v̄, D(v)

z̄ v̄, D(v)
z D

(v)
z̄ v̄, . . .}, in which case qw = −1. When this does not lead to confusion, 

we will sometimes simply write Dz in place of D(v)
z , Dz̄ for D(v)

z̄ .

The covariant derivative has the Leibniz property: D(v)
i (a · b) = D

(v)
i (a) · b + a ·D(v)

i (b). The 
commutator of covariant derivatives produces the pull-back of the Fubini–Study form:

[D(v)
z ,D

(v)
z̄ ] = D

(v)
z̄ v̄ ◦ D(v)

z v − D(v)
z v̄ ◦ D

(v)
z̄ v . (3)

The action of the CP2 σ -model (with zero θ -term) is:

S =
∫
M

i

2
dz ∧ dz̄

(‖Dzv‖2 + ‖Dz̄v‖2) (4)

The equation of motion following from this action reads

D
(v)
z̄ D(v)

z v = α v, (5)

where α is a scalar function. Multiplying this equation by v̄ and using the Leibniz property 
of the covariant derivative together with the identity v̄ ◦ D

(v)
z v = 0 (which follows from the 
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