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Abstract

We treat string propagation and interaction in the presence of a background Neveu–Schwarz three-form 
field strength, suitable for describing vortex rings in a superfluid or low-viscosity normal fluid. A circular 
vortex ring exhibits instabilities which have been recognized for many years, but whose precise bound-
aries we determine for the first time analytically in the small core limit. Two circular vortices colliding 
head-on exhibit stronger instabilities which cause splitting into many small vortices at late times. We pro-
vide an approximate analytic treatment of these instabilities and show that the most unstable wavelength 
is parametrically larger than a dynamically generated length scale which in many hydrodynamic systems 
is close to the cutoff. We also summarize how the string construction we discuss can be derived from the 
Gross–Pitaevskii Lagrangian, and also how it compares to the action for giant gravitons.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

We are interested in the dynamics of vortex rings in a medium, moving slowly relative to the 
speed of sound cs and interacting with themselves through perturbations of the medium. We will 
use the following action to describe the interacting vortices:

S =
∑
α

[
−csτ1,bare

∫
Σα

dt dθ |∂θ
�Xα| + μ1

∫
Σα

B2

]
− λ

2

∑
α,β

∫
reg

dt dθ dθ̃
∂θ

�Xα · ∂θ̃
�Xβ

| �Xα(θ) − �Xβ(θ̃)| ,
(1)
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where α and β are labels running over the several separate vortices and B2 is the pull-back of a 
spacetime gauge potential B2 satisfying

dB2 = H3 = ρ0

6
εmnpdxm ∧ dxn ∧ dxp. (2)

Essentially this action (but without the explicit tension term) was justified in [1] as an effective 
description of hydrodynamical vortices. Related actions were considered in the early literature on 
string theory, for example [2–4]. The tension term in (2) is understood to represent microscopic 
dynamics of the vortex core over which we do not have full control. The regularized integral ∫

reg provides some ultraviolet cutoff for the divergence that arises when the denominator of the 
integrand vanishes. A common choice of regulator, which we will adopt, is to replace

∣∣ �Xα(θ) − �Xβ(θ̃)
∣∣ →

√( �Xα(θ) − �Xβ(θ̃)
)2 + a2, (3)

where the cutoff a is approximately the radius of the vortex core. We will assume μ1 > 0, which 
corresponds to a choice of orientation of the vortex; and it can be shown in the process of deriving 
(1) that λ > 0.

The action (1) can be derived as the quasi-static approximation of classical effective string 
dynamics, where the effective strings move in response to a strong spatial background H3 and 
interact with themselves through the exchange of electrical components B2. This classical ef-
fective string dynamics can in turn be derived from the Gross–Pitaevskii equation, under some 
simplifying assumptions and approximations. There is in addition a weak coupling to a radiation 
field which can be represented as a perturbation bij of B2 and which propagates at the speed of 
sound.

Dynamics similar to (1) have been studied for over a hundred years. A notable early work is 
[5], and modern reviews include [6–9]. We will start in Section 2 by reviewing the instability of 
circular vortices [10]. We also calculate the zero point energy of fluctuations around circular vor-
tices when it is well defined. We will continue in Section 3 by treating the stronger instabilities 
that arise in head-on collisions of circular vortices [11]. In both analyses we restrict ourselves to 
the limit of vanishingly small core size, so that we do not need to consider deformations of the 
core. Such deformations are believed to play an important role in quantitatively accurate descrip-
tions of both single vortex instabilities [12–14] and the head-on collisions [8] in hydrodynamical 
settings. A novelty of our treatment is that in the small core limit we achieve full analytical con-
trol over both the unperturbed solutions and their linearized perturbations in terms of elliptic 
integrals.

The relation between vortices and classical strings has received significant attention in the 
string theory and cosmology literature. Early works [2–4] emphasized the possible relevance to 
superfluid Helium, proposed a cosmological role for vortex defects (cosmic strings) in theories 
with broken global U(1) symmetry, uncovered the role of the Neveu–Schwarz field B2, and ar-
rived at essentially the dynamics (1), including the tension term and a renormalization of it due to 
the regulated interaction term. Derivations of the dynamics (1) from effective theories of super-
fluids can be found in [15,16]; see also [17] and the later work [18]. For the sake of completeness, 
we will review in Section 4 a derivation of (1) from the Gross–Pitaevskii action. We then con-
clude in Section 5 with a summary of results and a comparison of vortex ring phenomena to giant 
gravitons. Appendix A is devoted to a detailed comparison of single vortex results to an earlier 
study [10].
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