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Abstract

We study the motion of a stochastic string in the background of a BTZ black hole. In the 1+ 1 dimensional
boundary theory this corresponds to a very heavy external particle (e.g., a quark), interacting with the
fields of a CFT at finite temperature, and describing Brownian motion. The equations of motion for a
string in the BTZ background can be solved exactly. Thus we can use holographic techniques to obtain the
Schwinger—Keldysh Green function for the boundary theory for the force acting on the quark. We write
down the generalized Langevin equation describing the motion of the external particle and calculate the
drag and the thermal mass shift. Interestingly we obtain dissipation even at zero temperature for this 1 + 1
system. Even so, this does not violate boost (Lorentz) invariance because the drag force on a constant
velocity quark continues to be zero. Furthermore since the Green function is exact, it is possible to write
down an effective membrane action, and thus a Langevin equation, located at a “stretched horizon™ at an
arbitrary finite distance from the horizon.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

AdS/CFT correspondence [1-3,29] has been used quite successfully to study thermal prop-
erties such as the viscosity of V' =4 super Yang-Mills theory at finite temperature. Dissipation
and thermal fluctuation are two sides of the same coin as embodied in the famous fluctuation—
dissipation (FD) theorem. The study of fluctuations using holographic techniques has been done
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in several papers [4-7,9—11,13] and the fluctuation—dissipation theorem has been shown to hold.
Different techniques [4,5] have been used to address this issue. A very versatile technique is
in terms of Green functions. Son and Teaney [5] have used holographic techniques to calculate
Green functions to address these questions in the context of Brownian motion of a particle such
as a quark.

The fluctuation—dissipation theorem in the context of Brownian motion has been studied by
Kubo [17,18] and Mori [19,20] among others. Brownian motion can be described as a stochastic
process [21]. In some approximation it is Markovian. If we can assume that velocities at two in-
stants are not correlated, then it is a Markovian process when described in terms of position. Thus
one can define a probability P (x(¢), t; x(tp), o) as the conditional probability for the particle to
be in position x(¢) at time 7 given that it was at x(#y) at time #y. One can also write a Fokker—
Planck equation for P (x(¢), t; x(tp), to). On the other hand if we want a finer description one can
use the velocity as the variable defining the Markovian process in terms of P (v(t), t; v(fp), to).
This is a good approximation as long as the duration of a collision is very small, which is equiva-
lent to saying that acceleration at different instants is uncorrelated. The Fokker—Planck equation
in the velocity description is
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Here a; = % and a; = %. Here Av is the change in velocity in time Af.
One can obtain these from the related Langevin equation:
mv=—ypv+E&(@) (1.2)

where £(¢) is the random force that is responsible for the fluctuations, obeying (£()&(t")) =
I'§(t—1t") and (£(r)) = 0. v(fy) = vg is the initial condition. Thus a; = (v(At) —vy) = —%voAt.
From the solution of the Langevin equation (taking 7y = 0):
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one can obtain a, = # Thus the Fokker—Planck equation becomes:
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Finally since we know that P(v) = e~ %T is a time independent solution of the Fokker—Planck
equation we get

I =2ykT (1.5)

This is the fluctuation—dissipation theorem in this context, because it relates I”, the strength
of the fluctuation, to y the strength of the dissipation.

The Langevin equation is much more convenient to work with. To the extent that it assumes
that time scales are larger than the microscopic time scale it must fail for very small time scales.
As Kubo has shown, stationarity should imply that
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