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Abstract

In this note I revisit the calculation of partition function of simple one-dimensional systems solvable by
Bethe Ansatz. Particularly I show that by the precise definition and treatment of the partition function the
nontrivial normalization factor proposed in a recent work to give the correct O (1) corrections to the free
energy can be derived in a straightforward manner.
© 2011 Elsevier B.V. All rights reserved.
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1. Introduction

Recent developments in both field theory and solid state physics have shown, that in certain
problems, where surface or impurity effects are important, non-macroscopic contributions to the
thermodynamic quantities like the free energy may play an important role [1,2]. Among these
systems those solvable by Bethe Ansatz (BA) due to the exact treatability are of special impor-
tance. For these one-dimensional (1D) systems the free energy is calculated following the method
developed by C.N. Yang and C.P. Yang [3] for the § Bose gas. The basic idea of this method is
that through the density of momenta (rapidities) an entropy can be defined and a free energy as a
functional of the rapidity density can be constructed. The minimization of this functional yields
both the equilibrium state and the macroscopic part of the free energy of the finite temperature
system. Based on this idea the present author developed a method to calculate the O(1) free en-
ergy contributions of the states near to the equilibrium [4], however the contributions found have
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not met the expectations [5]: for periodic boundary conditions (PBC) no O (1) corrections have
been expected, but the calculation gave some, and also for the case of open ends with integrable
boundaries (IB) some of the obtained terms were not of the expected structure. Recently, based
on intuitive arguments concerning the density of states in the configuration space a nontrivial
normalization of the partition function has been proposed [6], by which these differences can
be dissolved: in the case of PBC the corrections are canceled, while for the IB case they are
corrected. In the present note we derive this nontrivial factor directly by the careful definition
and treatment of the partition function. This way this work confirms the proposal of [6] and
completes [4].

As a starting point we briefly review the ingredients of the calculations. This will serve also to
make clear our notations and expose the problem in a more tractable form. It has been tempting
to formulate our treatment in a general form, as however the derivation of the entropy term for
the free energy functional is slightly different for closed and open boundaries we treat the two
cases separately: first we deal with the case of periodic boundary condition in more details, and
in case of integrable boundaries we point out the differences only.

2. BA and BA thermodynamics

We consider a system with BA equations
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Here the 0 are the rapidities of the particles, p(0) is the momentum of a particle with rapidity 6,
the ¢ (60 — 0’) is a phase closely related (up to a constant equal) to the phase shift arising when
a particle with rapidity 6 is scattered on an other with ', and the I quantum numbers are either
integers or halfs of odd-integers depending on the number of particles N. (For later purposes
we chose the Riemann sheets to have ¢ continuous at zero argument.) To each set of quantum
numbers {/;, I # I;, if j #1} (1) defines a set of real rapidities {6, 0; # 0;, if j # }. The wave
functions belonging to the different solutions of (1) are orthogonal and form a complete set. The
energy of such a state (modified due to the chemical potential u if necessary) is the sum of the
contributions of the individual particles
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The finite temperature description [3] is based on the idea, that for a macroscopic system the
roots of (1) can be described by densities, and the thermodynamic quantities can be given by
these. In particular the p(8) density of particles is defined so, that the # of 6; € (6,6 + Af) is
Lp(6)A6 and the py(0) density of holes is given by the equation obtained from (1)
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All p(@) functions are physical, for which (3) yields a non-negative pp(8), as for these densi-
ties /; quantum number sets can be constructed which define 6; roots distributed according to
p(0) (with a certain accuracy). The number how many ways this can be done, i.e. the number of
states represented by one single rapidity density is estimated by the combinatorial factor

p(6) + o4 (6) = + [ Ko-0)p(@) a0 witn K@) = )



Download English Version:

https://daneshyari.com/en/article/1841188

Download Persian Version:

https://daneshyari.com/article/1841188

Daneshyari.com


https://daneshyari.com/en/article/1841188
https://daneshyari.com/article/1841188
https://daneshyari.com/

