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Abstract

The five-dimensional Ising model with free boundary conditions has recently received a renewed interest 
in a debate concerning the finite-size scaling of the susceptibility near the critical temperature. We provide 
evidence in favour of the conventional scaling picture, where the susceptibility scales as L2 inside a critical 
scaling window of width 1/L2. Our results are based on Monte Carlo data gathered on system sizes up 
to L = 79 (ca. three billion spins) for a wide range of temperatures near the critical point. We analyse the 
magnetisation distribution, the susceptibility and also the scaling and distribution of the size of the Fortuin–
Kasteleyn cluster containing the origin. The probability of this cluster reaching the boundary determines 
the correlation length, and its behaviour agrees with the mean field critical exponent δ = 3, that the scaling 
window has width 1/L2.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The Ising model in dimension d = 5 is of particular interest since it is the first case where 
the model is strictly above its upper critical dimension dc = 4. Rigorous results [1,2] establish 
that the critical exponents of the model assume their mean field values. Here the specific heat 
exponent α = 0, and the results of [2] also imply that the specific heat is bounded at the critical 
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point. Various other properties have also been shown to have mean-field behaviour, and a unified 
proof of this was given by Sakai [3] who developed a working version of the lace expansion for 
the Ising model. Additionally, recent simulation results [4] indicate that, just as for the mean field 
case, the specific heat is discontinuous at the critical point.

In contrast to these asymptotic results there has been a long running debate over the finite 
size scaling for the model with free boundary conditions. We’ll refer the reader to [5] for a 
fuller overview of the history and stick to the presently most relevant parts here. For d = 5
and cyclic boundary conditions there is agreement that e.g. χ ∝ L5/2 for a lattice of side L. 
The conventional picture for the free boundary case is that χ ∝ L2. However, it has also been 
suggested [5] that the free boundary case should scale in the same way as the cyclic boundary 
case near the finite size susceptibility maximum. A computational study [6] of the, then, largest 
lattices possible supported the conventional picture, but in [5] it was suggested this was due to an 
underestimate of the influence of the large boundaries of the used systems. For systems exactly 
at the critical coupling this issue was resolved in [7] where a study of systems up to L = 160
demonstrated an increasingly good agreement with the conventional picture as the system size 
was increased. But, this left the behaviour in the rest of the critical scaling window open.

The aim of the current paper is to extend the study of large systems from [7] to the full critical 
window, including the location of the maximum of χ , and give the best possible estimates for 
the scaling behaviour in the coupling region discussed by all the previous papers. Apart from the 
susceptibility we also study properties of the Fortuin–Kasteleyn cluster containing the origin and 
use those to estimate both the susceptibility and the correlation length of the model.

To concretize, the predictions from [5] are that the location of the maximum for χ will scale 
as L−2 and the maximum value as L5/2. The more recent [8] agrees with these predictions, and 
also the prediction from [9] that the location of the maximum of the susceptibility should scale 
as L−2, as does [10], but both are based on smaller system sizes than those considered in the 
present work.

In short, our conclusion is that the data is well fitted by the conventional scaling picture, both 
for the location and value of the susceptibility, and location of the finite size critical point for the 
magnetisation.

2. Definitions and details

For a given graph G on N vertices the Hamiltonian with interactions of unit strength along 
the edges is H = − 

∑
ij sisj where the sum is taken over the edges ij . Here the graph G is a 

5-dimensional grid graph of linear order L with free boundary conditions, i.e. a cartesian product 
of 5 paths on L vertices, so that the number of vertices is N = L5 and the number of edges is 
5L5(1 − 1/L). We use K = 1/kBT as the dimensionless inverse temperature (coupling) and 
denote the thermal equilibrium mean by 〈· · ·〉. The critical coupling Kc was recently estimated 
by us [4] to Kc = 0.11391498(2). We will define a rescaled coupling as κ = L2(K − Kc) which 
gives a scaling window of width L−2. The standard definitions apply; the magnetisation is M =∑

i Si (summing over the vertices i) and the energy is E = ∑
ij SiSj (summing over the edges 

ij ). We let m = M/N , U = E/N and U = 〈U〉.
Generally our terminology follows that of e.g. [11], and here we explicitly state the definitions 

most used in this paper. The susceptibility is χ = 〈
M2

〉
/N while we define the modulus suscep-

tibility as χ̄ = var (|M|) /N . The standard deviation is denoted σ , as is customary. We will refer 
to the point where the distribution of M changes from unimodal to bimodal as K∗

c (L), or, in its 



Download English Version:

https://daneshyari.com/en/article/1841821

Download Persian Version:

https://daneshyari.com/article/1841821

Daneshyari.com

https://daneshyari.com/en/article/1841821
https://daneshyari.com/article/1841821
https://daneshyari.com

