

Available online at www.sciencedirect.com

ScienceDirect

Nuclear Physics B 904 (2016) 176-215

www.elsevier.com/locate/nuclphysb

$\mathcal{N} = 4$ superconformal Ward identities for correlation functions

A.V. Belitsky a,b, S. Hohenegger c, G.P. Korchemsky b,*, E. Sokatchev c,d,e

- ^a Department of Physics, Arizona State University, Tempe, AZ 85287-1504, USA
- ^b Institut de Physique Théorique, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France ¹
 - ^c Physics Department, Theory Unit, CERN, CH-1211, Geneva 23, Switzerland ^d Institut Universitaire de France, 103, bd Saint-Michel, F-75005 Paris, France
- ^e LAPTH, Université de Savoie, CNRS, B.P. 110, F-74941 Annecy-le-Vieux, France²

Received 22 September 2015; accepted 4 January 2016

Available online 7 January 2016

Editor: Stephan Stieberger

Abstract

In this paper we study the four-point correlation function of the energy-momentum supermultiplet in theories with $\mathcal{N}=4$ superconformal symmetry in four dimensions. We present a compact form of all component correlators as an invariant of a particular abelian subalgebra of the $\mathcal{N}=4$ superconformal algebra. This invariant is unique up to a single function of the conformal cross-ratios which is fixed by comparison with the correlation function of the lowest half-BPS scalar operators. Our analysis is independent of the dynamics of a specific theory, in particular it is valid in $\mathcal{N}=4$ super Yang-Mills theory for any value of the coupling constant. We discuss in great detail a subclass of component correlators, which is a crucial ingredient for the recent study of charge-flow correlations in conformal field theories. We compute the latter explicitly and elucidate the origin of the interesting relations among different types of flow correlations previously observed in arXiv:1309.1424.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP³.

^{*} Corresponding author.

E-mail address: Gregory.Korchemsky@cea.fr (G.P. Korchemsky).

Unité Mixte de Recherche 3681 du CNRS.

² UMR 5108 du CNRS, associée à l'Université de Savoie.

1. Introduction

In this paper we study four-point correlation functions involving conserved currents in four-dimensional theories with $\mathcal{N}=4$ superconformal symmetry. They include the R-symmetry current J_{μ} , the supersymmetry currents $(\Psi^{\alpha}_{\mu}, \bar{\Psi}^{\dot{\alpha}}_{\mu})$ and the energy-momentum tensor $T_{\mu\nu}$. These operators belong to the so-called $\mathcal{N}=4$ energy-momentum supermultiplet [1] and appear as various components in the expansion of the superfield \mathcal{T} in powers of the 8 chiral $(\theta^{\dot{\alpha}}_{\alpha})$ and 8 antichiral $(\bar{\theta}^{\dot{\alpha}}_{\dot{\alpha}})$ Grassmann variables, schematically,

$$\mathcal{T} = O(x) + (\theta \sigma^{\mu} \bar{\theta}) J_{\mu}(x)$$

$$+ (\theta \sigma^{\mu} \bar{\theta}) \left[\theta \Psi_{\mu}(x) + \bar{\theta} \Psi_{\mu}(x) \right] + (\theta \sigma^{\mu} \bar{\theta}) (\theta \sigma^{\nu} \bar{\theta}) T_{\mu\nu}(x) + \dots$$

$$(1.1)$$

Here the lowest component is a half-BPS scalar operator O of dimension two, belonging to the representation 20' of the R-symmetry group SU(4). The superfield (1.1) satisfies a half-BPS 'shortening' condition, i.e., it is annihilated by half of the super-Poincaré generators. As a consequence, the expansion (1.1) is shorter than one would expect since \mathcal{T} effectively depends on 4 chiral and 4 antichiral Grassmann variables only [2].

The central object of our study is the four-point correlation function of the energy–momentum supermultiplet (1.1) in $\mathcal{N}=4$ superconformal theories. The most widely studied example is $\mathcal{N}=4$ super-Yang–Mills theory (SYM) but in what follows we do not need to know any details about the dynamics of the theory. Our analysis is based solely on $\mathcal{N}=4$ superconformal invariance and can be easily adapted to maximally supersymmetric theories in other space–time dimensions.

 $\mathcal{N}=4$ superconformal symmetry is powerful enough to fix the form of the two- and three-point correlation functions of \mathcal{T} 's [3–5]. In a perturbative theory, like $\mathcal{N}=4$ SYM, the latter are protected from quantum corrections and only receive contributions at Born level [6]. The four-point correlation function (we use the notation $(i) \equiv (x_i, \theta_i, \bar{\theta}_i)$)

$$\mathcal{G}_4 = \langle \mathcal{T}(1) \dots \mathcal{T}(4) \rangle \tag{1.2}$$

is the first and simplest example of an unprotected quantity. It is this object that we study in the present paper.

The super-correlation function (1.2) combines together the correlation functions of various components of the multiplet (1.1). The latter appear as coefficients in the expansion of \mathcal{G}_4 in the Grassmann variables. The lowest component of \mathcal{G}_4 (with $\theta_i = \bar{\theta}_i = 0$) is the four-point correlation function of the half-BPS operators

$$\mathcal{G}_4\big|_{\theta_i=\bar{\theta}_i=0} = \langle O(x_1)\dots O(x_4)\rangle. \tag{1.3}$$

 $\mathcal{N}=4$ superconformal symmetry fixes this correlation function up to a single function $\Phi(u,v)$ of the two conformal cross-ratios u and v [7–9]. In the special case of $\mathcal{N}=4$ SYM, this function comprises the dependence on the coupling constant. At weak coupling, its expansion in terms of scalar conformal integrals has been worked out up to six loops [10,11] and explicit expressions are available up to three-loop order [12–15]. At strong coupling, it has been computed within the AdS/CFT correspondence in the supergravity approximation [16–18].

A unique feature of the super-correlation function (1.2) is that the total number of Grassmann variables it depends upon (16 chiral and 16 antichiral variables) matches the total number of $\mathcal{N}=4$ supercharges (Q^A_{α} , $\bar{Q}^{\dot{\alpha}}_A$, S^A_{α} and $\bar{S}^{\dot{\alpha}}_A$). As we show below, this property alone ensures that $\mathcal{N}=4$ superconformal symmetry completely fixes all of its components, given the lowest one

Download English Version:

https://daneshyari.com/en/article/1841868

Download Persian Version:

https://daneshyari.com/article/1841868

<u>Daneshyari.com</u>