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LQG vertex with finite Immirzi parameter
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Abstract

We extend the definition of the “flipped” loop-quantum-gravity vertex to the case of a finite Immirzi
parameter γ . We cover both the Euclidean and Lorentzian cases. We show that the resulting dynamics
is defined on a Hilbert space isomorphic to the one of loop quantum gravity, and that the area operator
has the same discrete spectrum as in loop quantum gravity. This includes the correct dependence on γ ,
and, remarkably, holds in the Lorentzian case as well. The ad hoc flip of the symplectic structure that was
required to derive the flipped vertex is not anymore required for finite γ . These results establish a bridge
between canonical loop quantum gravity and the spinfoam formalism in four dimensions.
© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The Barrett–Crane (BC) vertex, which provides a tentative definition of the quantum-gravity
dynamics, has been extensively investigated during the past years [1]; its amplitude is essentially
given by a Wigner 10j symbol. A different vertex has been recently introduced in [2,3]; its am-
plitude essentially given by the square of an SU(2) Wigner 15j symbol. There are indications
that this new vertex could ameliorate the properties of the BC model. First, it appears to correct
an over-imposition of the constraints that was remarked in the derivation of the BC vertex. Sec-
ond, it does not appear to freeze the angular degrees of freedom of the gravitational field (that
is, gab(x) for a �= b) as it has been argued the BC model might do [4]. Third, preliminary nu-
merical investigations appear to be consistent with the expectation that geometry wave packets
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are propagated by this new vertex in a way consistent with Euclidean general relativity (GR) [5].
And finally, its kinematics matches exactly the one of the canonical quantization of GR, as given
by loop quantum gravity (LQG) [6]. The vertex was defined in [2,3] only for the Euclidean case,
and in the absence of an Immirzi parameter γ .

A key step to extend the definition of this new vertex was taken in [7], where a Lorentzian
version of the vertex amplitude is constructed, still without γ . Here we extend the construction
of the vertex to the general case of finite γ , both for the Euclidean and the Lorentzian sectors.

As long emphasized by Sergei Alexandrov [8], the key technical problem is how to impose
the second class quantum constraints in a covariant way (see [9]). These constraints are solved
in [2,3] using a master-constraint-like [10] technique. In [11], it was shown that these constraints
can equivalently be solved using a different technique, based on coherent states, yielding the same
result. This derivation reinforces the credibility of the approach, and opens a direct connection
to the semiclassical limit.

In the same paper [11], on the other hand, it was also pointed out that considering a differ-
ent class of coherent states leads to a variant of the model. This variant has been extensively
explored in [12], and extended to the case of finite γ > 1. The original model of [2,3] and the
variant pointed out in [11] appear as limiting γ → 0 and γ → ∞ cases, respectively. All these
models [2,3,11,12] are defined by the same vertex, namely the square of the SU(2) Wigner 15j

symbol; they differ for the class of boundary states considered and their measure in the spinfoam
sum. In [13], on the other hand, it was observed that the use of coherent states may not truly con-
straint the physical state space of the theory when the constraints are not entirely second class,
and this happens in the limit case γ → ∞. Therefore, while the coherent state technique intro-
duced in [11] appears to work well in the γ → 0 case, its straightforward extension to large γ

yields a state space larger than the physical state space of LQG and—one might argue—larger
that the proper quantum state space of gravity. Furthermore, the spectrum of the geometrical op-
erators in this formulation turns out to be quite different from the standard one of loop quantum
gravity [14]. Here, thus, we reconsider the finite γ case, but we solve the constraints using the
same master constraint technique as in [2,3]. We leave the understanding of our results in terms
of coherent states for future developments.

We find a model with a number of interesting properties. First, the second class constraints
do reduce the dimension of the physical state space as one wants. Second, for all values of γ the
state space precisely matches the one of LQG (on a fixed graph). This is particularly interesting
in the case of the Lorentzian theory, where such a match is traditionally more problematic. Third,
the spectrum of the area operator turns out to be discrete, and to be the same as in LQG, including
the correct dependence on the Immirzi parameter γ . What is of particular interest is that this is
true in the Lorentzian case as well, in spite of the fact that the unitary representations of the
Lorentz group are labelled also by a continuous parameter. This provides a solution to a long-
standing controversy: the area spectrum is discrete in LQG while it appears to be continuous in
the spinfoam framework. The solution is that the area spectrum is continuous in spinfoams at the
kinematical level, but it turns out to become discrete after proper implementation of the (second
class) constraints. Finally, the ad hoc “flip” of the symplectic structure used to first derive the
vertex in [2,3] is not required in the finite γ case.

All these developments rely on two basic ideas. The first, championed by Giorgio Im-
mirzi [15], is to (“loop”) quantize GR by first discretizing it on a Regge-like triangulation, with
appropriately chosen variables. The second is to treat the simplicity constraints by first imposing
them properly in a fixed SO(4) (or SO(3,1)) gauge, and then projecting on the gauge invariant
spaces. The implementation of these ideas is discussed in detail in [2,3]. Here, we briefly de-
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