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Abstract

Electric–magnetic dualities are equivalence between strong and weak coupling constants. A standard ex-
ample is the exchange of electric and magnetic fields in an abelian gauge theory. We show three methods 
to perform electric–magnetic dualities in the case of the non-commutative U(1) gauge theory. The first 
method is to use covariant field strengths to be the electric and magnetic fields. We find an invariant form 
of an equation of motion after performing the electric–magnetic duality. The second method is to use the 
Seiberg–Witten map to rewrite the non-commutative U(1) gauge theory in terms of abelian field strength. 
The third method is to use the large Neveu Schwarz–Neveu Schwarz (NS–NS) background limit (non-
commutativity parameter only has one degree of freedom) to consider the non-commutative U(1) gauge 
theory or D3-brane. In this limit, we introduce or dualize a new one-form gauge potential to get a D3-brane 
in a large Ramond–Ramond (R–R) background via field redefinition. We also use perturbation to study 
the equivalence between two D3-brane theories. Comparison of these methods in the non-commutative 
U(1) gauge theory gives different physical implications. The comparison reflects the differences between 
the non-abelian and non-commutative gauge theories in the electric–magnetic dualities. For a complete 
study, we also extend our studies to the simplest abelian and non-abelian p-form gauge theories, and a 
non-commutative theory with the non-abelian structure.
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1. Introduction

The M-theory provides useful dualities to unify different kinds of theories and helps us to 
understand supergravity solutions [1]. In low-energy limit, the ten dimensional supergravity has 
the T-duality and S-duality. The T-duality is a duality on a target space. The T-duality of closed 
string theory [2,3] exchanges the momentum and winding modes, and the T-duality of open 
string theory exchanges the Dirichlet and Neumann boundary conditions. The T-duality requires 
an isometry on a compact torus, but a generic background does not always have an isometry in 
closed string theory. In other words, the T-duality maps single valued fields to non-single val-
ued fields and we lose periodicity of the background. Then we obtain the non-geometric flux 
after performing the T-duality twice in the case of constant H -flux. This mapping gives rise to a 
problem on quantum dynamics. The solution is to use a double space to construct a well-defined 
transition function as a diffeomorphism in closed string theory [4–9]. With a global symmetry 
description, we sacrifice local symmetry in the double space. Local symmetry in the double space 
is still possible, but difficulties come from the closure of the generalized Lie derivative. This dou-
ble construction is also extended to open string theory, and has also been applied to cosmology 
[10–17]. These formulations rely on geometric constructions from the Courant bracket or gen-
eralized geometry [18–20]. This bracket comes from the combination of tangent and cotangent 
bundles. A theory in a double space with the strong constraints (removing additional coordi-
nates) is equivalent to a theory with the Courant bracket. The S-duality is a non-perturbative 
duality by exchanging the strong and weak coupling constants. In four dimensional electro-
magnetism, we have an electric–magnetic duality between electric and magnetic fields. This 
duality is a special case of the S-duality. A problem with the S-duality is that it is hard to be 
performed exactly due to some issues involving strong couplings. At low-energy level, one suc-
cessful example is a low-energy effective theory with a non-commutativity parameter (inversely 
proportional to antisymmetric backgrounds) being a perturbative parameter [21]. The extension 
of duality from ten dimensional supergravity to eleven dimensional supergravity is the U-duality 
combining T-duality and S-duality. The manifest U-duality is studied in [22] using extended 
coordinates.

String theory is described by a two dimensional sigma model. On bulk, the sigma model 
describes gravity. When we impose the Dirichlet and Neumann boundary conditions on the 
sigma model, the boundary term comes from the gauge principle. This boundary term gives 
a picture of open string ending on a D-brane. The ending point of the open string shows the 
non-commutativity. Non-commutative geometry is naturally hidden in string theory. The low-
energy effective theory [21,23–29] of open string is the Dirac–Born–Infeld (DBI) model. In the 
DBI model, we have the Seiberg–Witten map that maps the commutative theory to the non-
commutative theory. In the non-commutative description, the leading order term in the action is 
a non-commutative U(1) gauge theory with the Moyal product. The Moyal product captures all 
the effects of the non-commutativity parameters. We find an alternative way to examine the string 
theory. Now we have many different kinds of non-commutative geometry generalized from the 
DBI model. This generalization helps us to find more interesting field theories and constrain our 
low-energy effective field theories from the non-commutative geometry. The first example is the 
Nambu–Poisson M5 (NP M5) brane theory. This theory describes a M2–M5 system in the large 
C field background (only three spatial components) on the non-commutative space at low-energy 
level [23,24]. Based on dimensional reduction, we find a Dp-brane in the large (p − 1)-form 
background [25,26] and a Dp-brane in the large NS–NS two-form background. Especially for 
p = 3, the S-duality relation to all orders is found in [21]. According to the dualities, we find the 
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