

Available online at www.sciencedirect.com

ScienceDirect

Nuclear Physics B 909 (2016) 260-296

www.elsevier.com/locate/nuclphysb

Center of the universal Askey–Wilson algebra at roots of unity

Hau-Wen Huang 1

Department of Mathematics, National Central University, Chung-Li 32001, Taiwan

Received 22 February 2016; received in revised form 6 May 2016; accepted 8 May 2016

Available online 13 May 2016

Editor: Hubert Saleur

Abstract

Inspired by a profound observation on the Racah–Wigner coefficients of $U_q(\mathfrak{sl}_2)$, the Askey–Wilson algebras were introduced in the early 1990s. A universal analog Δ_q of the Askey–Wilson algebras was recently studied. For q not a root of unity, it is known that $Z(\Delta_q)$ is isomorphic to the polynomial ring of four variables. A presentation for $Z(\Delta_q)$ at q a root of unity is displayed in this paper. As an application, a presentation for the center of the double affine Hecke algebra of type (C_1^{\vee}, C_1) at roots of unity is obtained. © 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP³.

1. Introduction

Throughout this paper an algebra A is meant to be an associative algebra with unit and let Z(A) denote the center of an algebra A.

Fix a complex scalar $q \neq 0$. In [36] Zhedanov proposed the Askey–Wilson algebras which involve five extra parameters ϱ , ϱ^* , η , η^* , ω . Given these scalars the *Askey–Wilson algebra* is an algebra over the complex number field $\mathbb C$ generated by K_0 , K_1 , K_2 subject to the relations

$$qK_1K_2 - q^{-1}K_2K_1 = \omega K_1 + \varrho K_0 + \eta^*,$$

E-mail address: hauwenh@math.ncu.edu.tw.

¹ The research was partially supported by National Center for Theoretical Sciences of Taiwan and the Council for Higher Education of Israel.

$$q K_2 K_0 - q^{-1} K_0 K_2 = \omega K_0 + \varrho^* K_1 + \eta,$$

$$q K_0 K_1 - q^{-1} K_1 K_0 = K_2.$$

These algebras are named after R. Askey and J. Wilson since the algebras can also describe a hidden relation between the three-term recurrence relation and the q-difference equation of Askey-Wilson polynomials [1]. Under the mild assumptions $q^4 \neq 1$, $\varrho \neq 0$ and $\varrho \neq 0$ substitute

$$K_0 = -\frac{\sqrt{\varrho^*}A}{q^2 - q^{-2}}, \qquad K_1 = -\frac{\sqrt{\varrho}B}{q^2 - q^{-2}}, \qquad K_2 = \frac{\omega}{q - q^{-1}} - \frac{\sqrt{\varrho}\varrho^*C}{q^2 - q^{-2}}$$

into the defining relations of the Askey-Wilson algebra. The resulting relations become that each of

$$A + \frac{qBC - q^{-1}CB}{q^2 - q^{-2}}, \qquad B + \frac{qCA - q^{-1}AC}{q^2 - q^{-2}}, \qquad C + \frac{qAB - q^{-1}BA}{q^2 - q^{-2}}$$
(1)

is equal to a scalar. By interpreting the elements in (1) as central elements, it turns into the so-called *universal Askey–Wilson algebra* \triangle_q [33]. Let us denote $\triangle = \triangle_q$ for brevity.

Let α , β , γ denote the central elements of Δ obtained from multiplying the elements (1) by $q + q^{-1}$, respectively. Motivated by Zhedanov [36, §1], the distinguished central element

$$qABC + q^{2}A^{2} + q^{-2}B^{2} + q^{2}C^{2} - qA\alpha - q^{-1}B\beta - qC\gamma$$
 (2)

is called the *Casimir element* of \triangle . For q not a root of unity, the center of \triangle has been shown in [33, Theorem 8.2] to be the four-variable polynomial ring over $\mathbb C$ generated by α , β , γ and the Casimir element (2). The inspiration of our study on $Z(\triangle)$ at roots of unity comes from the quantum group $U_q'(\mathfrak{so}_3)$. The quantum group $U_q'(\mathfrak{so}_n)$ [9] is not Drinfeld–Jimbo type but plays the important roles in the study of q-Laplace operators and q-harmonic polynomials [17, 27], q-ultraspherical polynomials [31], quantum homogeneous spaces [26], nuclear spectroscopy [10], (2+1)-dimensional quantum gravity [25,24] and so on. For n=3 the quantum group is exactly the Askey–Wilson algebra with $q^4 \neq 1$, $\varrho = 1$, $\varrho^* = 1$, $\eta = 0$, $\eta^* = 0$, $\omega = 0$. According to [27, §4] the Casimir element of $U_q'(\mathfrak{so}_3)$ is defined to be

$$q(q^2 - q^{-2})K_0K_1K_2 - q^2K_0^2 - q^{-2}K_1^2 - q^2K_2^2.$$
(3)

As far as we know, Odesskii [29, Theorem 4] first found three additional central elements of $U'_q(\mathfrak{so}_3)$ at roots of unity defined as follows. Assume that q is a primitive dth root of unity and set

$$d = \begin{cases} d & \text{if } d \text{ is odd,} \\ d/2 & \text{if } d \text{ is even.} \end{cases}$$

Denote by \mathbb{Z} the ring of integers and by \mathbb{N} the set of the nonnegative integers. For each $n \in \mathbb{N}$ define

$$T_n(X) = \sum_{i=0}^{\lfloor n/2 \rfloor} (-1)^i \left(\binom{n-i}{i} + \binom{n-i-1}{i-1} \right) X^{n-2i}. \tag{4}$$

Here $\binom{n}{-1}$ for $n \in \mathbb{N}$ and $\binom{-1}{-1}$ are interpreted as 0 and 1, respectively. Note that $\frac{1}{2}T_n(2X)$ is the Chebyshev polynomial of the first kind. Then

$$\Gamma_i = T_d(-(q^2 - q^{-2})K_i)$$
 for all $i \in \mathbb{Z}/3\mathbb{Z}$

are central in $U_q'(\mathfrak{so}_3)$. A proof can be found in [11, Lemma 2].

Download English Version:

https://daneshyari.com/en/article/1842809

Download Persian Version:

https://daneshyari.com/article/1842809

<u>Daneshyari.com</u>