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Abstract

Using the complex φ4-model as a prototype for a system which is simulated by a worm algorithm, 
we show that not only the charged correlator 〈φ∗(x)φ(y)〉, but also more general correlators such as 
〈|φ(x)||φ(y)|〉 or 〈arg(φ(x)) arg(φ(y))〉, as well as condensates like 〈|φ|〉, can be measured at every step 
of the Monte Carlo evolution of the worm instead of on closed-worm configurations only. The method 
generalizes straightforwardly to other systems simulated by worms, such as spin or sigma models.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

In a paper from 2001 [1], Prokof’ev and Svistunov proposed the worm algorithm as an alter-
native to cluster algorithms [2] to overcome critical slowing-down in the simulation of classical 
spin models like the Ising or the 3 state Potts model, but also of the complex φ4 model.

Critical slowing-down usually occurs at a second order phase transition where the typical 
length-scale over which the degrees of freedom (e.g. the spins of an Ising system) are corre-
lated, diverges and the system develops long-range order. Local update algorithms then usually 
become very inefficient due to the high energy barrier that has to be overcome to flip individual 
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spins against the field of its nearest neighbors and to the corresponding low acceptance rate of 
such updates. Cluster algorithms overcome this problem by being non-local: typical structures of 
correlated sites, the so-called clusters, are grown and then flipped as a whole. Because the typical 
size of these clusters grows like the correlation length, critical slowing-down is averted. Unfor-
tunately, the typical cluster size usually grows even further when leaving the critical region and 
going deeper into the ordered phase, resulting in a loss of efficiency of the cluster updates which 
becomes particularly dramatic when the typical cluster size approaches the size of the whole 
system.1 The more relevant problem with cluster algorithms is however that they are in general 
not useful if the system couples to an external field, as the large energy barrier that has to be 
overcome to flip a whole cluster against the external field quickly leads to very low acceptance 
rates even for moderate cluster sizes.

Worm algorithms on the other hand are based on local updates and remain relatively efficient 
even in the ordered phase and in the presence of external fields. For bosonic systems, worm 
algorithms emerge quite naturally when expressing the partition function in terms of a particular 
kind of integer-valued “dual” variables, the so-called flux-variables (see [1,3–6,10] and Sec. 1.1). 
The working principle behind this dualization process is as follows: consider the simple system 
described by the following partition function:

Z =
1∫

0

d φ eφ+λ φ . (1.1)

If we wanted to use Monte Carlo to compute for example expectation value and variance of the 
field φ, i.e.

〈φ〉 = ∂ log(Z)

∂λ
and 〈φ2〉 − 〈φ〉2 = ∂2 log(Z)

∂λ2
, (1.2)

the standard way to do this would be to interpret eφ+λ φ as probability weight for doing impor-
tance sampling with respect to φ. To obtain the dual formulation, we instead write the integrand 
of (1.1) in a power series in φ, carry out the integral for each monomial (which can usually be 
done analytically),

wn(λ) =
1∫

0

dφ
((1 + λ)φ)n

n! = (1 + λ)n

(n + 1)! , (1.3)

such that

Z =
∞∑

n=0

wn(λ), (1.4)

and then use the wn(λ) as probability weights for doing importance sampling with respect to the 
monomial order n, which is our new, integer-valued configuration variable, in terms of which the 
above observables read

∂ log(Z)

∂λ
= 〈n〉

1 + λ
and

∂2 log(Z)

∂λ2
= 〈n2〉 − 〈n〉2 − 〈n〉

(1 + λ)2
. (1.5)

1 When the typical clusters consist of almost the whole system, the cluster updates essentially just flip the whole system 
back and forth.
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