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Abstract

It is shown that the study of the imaginary part and of the corresponding dispersion relations of Feynman 
graph amplitudes within the differential equations method can provide a powerful tool for the solution of 
the equations, especially in the massive case.

The main features of the approach are illustrated by discussing the simple cases of the 1-loop self-mass 
and of a particular vertex amplitude, and then used for the evaluation of the two-loop massive sunrise and 
the QED kite graph (the problem studied by Sabry in 1962), up to first order in the (d − 4) expansion.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

In the last years we have assisted to an impressive increase in our knowledge of the mathemat-
ical structures that appear in multiloop Feynman integrals, thanks to the combined use of various 
computational techniques, such as to the method of differential equations [1–3], the introduc-
tion of a class of special functions (dubbed originally harmonic polylogarithms, HPLs [4,5], they 
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came out to be a subset of the much larger class of multiple polylogarithms, MPLs, see [6–9] and 
references therein), the definition of a so-called canonical basis [10] for dealing with increasingly 
larger systems of differential equations and the use of the Magnus exponentiation [11].

However, most of the above results have been obtained in the massless limit; indeed, the 
situation for massive amplitudes is different, as the two-loop massive sunrise (which has three 
propagators only) is still the object of thorough investigation [12–20]. A general approach to the 
study of arbitrarily complicated systems of differential equations within difference field theory 
has been recently proposed in [21].

In this paper we will show that the study of the imaginary parts and related dispersion relations 
satisfied by the Feynman amplitudes, within the differential equation frame, can provide another 
useful practical tool for their evaluation in the massive case as well.

The imaginary parts of Feynman graphs can be obtained in various ways. To start with, one 
can use Cutkosky–Veltman rule [22–24] for integrating directly the loop momenta in the very 
definition of the graphs. When the d-continuous dimensional regularization is used, nevertheless, 
that is practical only in the simplest cases. Another possibility is the extraction of the imaginary 
part from the solution of the differential equations, which of course requires the knowledge of the 
solution itself. More interestingly, one can observe that often the differential equations become 
substantially simpler when restricted to the imaginary part only, so that their solution can become 
easier.

In any case, once the imaginary part of some amplitude A(d; u), say ImA(d; u), is obtained, 
one has at disposal the dispersive representation for A(d; u), namely an expression of the form 

A(d;u) = 1

π

∫
dt ImA(d; t) 1

t − u

(where the limits of integration have been skipped for ease of typing). Such a representation turns 
out to be very useful when the amplitude A(d; u) appears within the inhomogeneous terms of 
some other differential equation, regardless of the actual analytical expression of A(d; u). Indeed, 
as the whole dependence on u is in the denominator (t − u) one can work out its contribution by 
considering only that denominator, freezing, so to say, the t -integration and the weight ImA(d; t)
until the dependence on the variable u (the variable of the differential equation) has been properly 
processed. Let us emphasize, again, that such a processing is, obviously, fully independent of the 
actual form of ImA(d; t).

In the following, we will illustrate the above remarks in a couple of elementary applications 
and then use them in the case of the two-loop QED-kite, i.e. the two-loop electron self-mass in 
QED, already studied by Sabry [25] long ago. The study of the kite amplitudes requires in turn 
the knowledge of the two-loop massive sunrise, which appears as inhomogeneous terms in their 
differential equations. Indeed, the imaginary part [26] and related dispersion relations [27,28]
have been already exploited long ago for studying the zeroth order of the sunrise and the kite 
integral. In this paper our goal is more general, as we will show how to use them consistently 
within the differential equations approach, which will allow us to investigate the solution at any 
order in the (d − 4) expansion.

The paper is organized as follows. We begin in section 2 studying the imaginary part of the 
one-loop self mass and its dispersion relation for generic values of the dimensions d . We elabo-
rate on its calculation both from Cutkosky–Veltman rule and from the differential equations. In 
section 3 we study a particular vertex amplitude through the differential equations method. The 
one-loop self-mass appears as inhomogeneous term in the equations and we show that their evalu-
ation can be simplified, once the one-loop self-mass is inserted as dispersive relation. In section 4
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