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Abstract

Induced by the Hagedorn instability, weakly-coupled U(N) gauge theories on a compact manifold ex-
hibit a confinement/deconfinement phase transition in the large-N limit. Recently we discover that the 
thermal entropy of a free theory on S3 gets reduced by a universal constant term, −N2/4, compared to 
that from completely deconfined colored states. This entropy deficit is due to the persistence of Gauss’s 
law, and actually independent of the shape of the manifold. In this paper we show that this universal term 
can be identified as the topological entangle entropy both in the corresponding 4 + 1D bulk theory and the 
dimensionally reduced theory. First, entanglement entropy in the bulk theory contains the so-called “parti-
cle” contribution on the entangling surface, which naturally gives rise to an area-law term. The topological 
term results from the Gauss’s constraint of these surface states. Secondly, the high-temperature limit also 
defines a dimensionally reduced theory. We calculate the geometric entropy in the reduced theory explicitly, 
and find that it is given by the same constant term after subtracting the leading term of O(β−1). The two 
procedures are then applied to the confining phase, by extending the temperature to the complex plane. 
Generalizing the recently proposed 2D modular description to an arbitrary matter content, we show the 
leading local term is missing and no topological term could be definitely isolated. For the special case of 
N = 4 super Yang–Mills theory, the results obtained here are compared with that at strong coupling from 
the holographic derivation.
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1. Motivation

In recent years intensive studies on entanglement entropy (EE) show that gauge theories pos-
sess nontrivial entanglement pattern [1]. Practically, different patterns of entanglement could then 
be employed to classify different phases of gauge theory. In the case of discrete gauge groups, 
topological order (TO) characterizes different phases of the gauge theories [2].1 More explicitly, 
the deconfined phase of discrete gauge theory exhibits nontrivial TO. TO is captured by a set 
of topological data, and one of them is topological entanglement entropy (TEE), the topological 
term extracted from the large-size expansion of EE [5,6]. A non-vanishing TEE is intimately 
related to the global gauge-invariant constraint in the deconfined phase, according to the string-
net condensation mechanism [7]. Generalization of TO to gauge theory with a continuous gauge 
group seems extremely urgent, but turns out not so straightforward. In strong-coupled gauge the-
ories with a gravity dual [8–10], the entanglement entropy can be conveniently calculated with 
the Ryu–Takayanaki formula [11,12], and attains manifestly the area-law term. The holographic 
EE behaves quite differently at different subregion scales in a confining background [13,14]. 
When properly extended to finite temperature, it also changes discontinuously across the de-
confining temperature [15]. However, the holographic derivation gives a vanishing result for the 
topological term [16]. It is suggested including of 1/N corrections [17], or bulk gravitational 
anomaly [18] could induce a nonzero result.

String-net condensation provides a natural physical mechanism for TO in gauge theories [7]. 
Intuitively, there are two necessary ingredients for string-net condensation: deconfined gauge 
degrees of freedom and global gauge-invariant constraint [19]. A simple system which satisfies
these two conditions is the high-temperature deconfined phase of a weakly-coupled U(N) gauge 
theory on a compact manifold [20,21]. For simplicity, we consider the free theory on S3. The 
question now becomes, how is the nontrivial topological property in such a thermal phase related 
to a nontrivial TEE defined at zero temperature? There are two different ways to think about 
this. First, consider the entanglement entropy of a 4 + 1 D bulk gauge theory with the sphere 
S

3 as the entangling surface. The partition induces non gauge-invariant degrees of freedom on 
the surface. Previous studies show that it is just the global Gauss’s law on the entangling surface 
that gives rise to the topological term [6,22]. Secondly, the high-temperature limit of the thermal 
phase defines naturally a dimensionally reduced theory on S3. TEE in this theory will then be 
given by the logarithm of the vacuum partition function, which is also well studied in the case 
of 2 + 1D Chern–Simons gauge theories [15,23]. In this paper we will try to make the relation 
clear from both points of view, and show that all of them are consistent. In comparison, we also 
perform the calculation in the confining phase.

The main results in the deconfined phase will be derived in the next section. In section 3
we apply the same procedure to the confining phase. Some discussions are given in the last 
section.

1 A pedagogic introduction can be found in Part III of [1]. Full classifications, including many recent progresses, of 
2 + 1D bosonic/fermionic TO’s are given in [3,4].
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